FreeTensor入门指南:编写你的第一个张量计算程序
2025-06-10 10:28:49作者:毕习沙Eudora
作为一款高性能张量计算框架,FreeTensor为开发者提供了简洁高效的编程接口。本文将带你了解FreeTensor的核心概念,并通过实例演示如何编写第一个FreeTensor程序。
向量加法示例
让我们从一个简单的向量加法程序开始:
import freetensor as ft
import numpy as np
n = 4
@ft.optimize
def test(a: ft.Var[(n,), "int32"], b: ft.Var[(n,), "int32"]):
y = ft.empty((n,), "int32")
for i in range(n):
y[i] = a[i] + b[i]
return y
result = test(np.array([1, 2, 3, 4], dtype="int32"),
np.array([2, 3, 4, 5], dtype="int32")).numpy()
print(result)
这个示例展示了FreeTensor的基本工作流程:
- 定义一个操作张量的Python函数
- 使用
@ft.optimize装饰器标记 - 调用函数时,FreeTensor会自动生成并编译高效的原生代码
核心概念解析
张量的声明与定义
在FreeTensor中,所有张量(包括函数参数、中间变量和返回值)都需要明确定义:
- 函数参数使用
ft.Var[shape, data_type]语法声明 - 中间变量可通过
ft.empty、ft.var或ft.zeros创建 - 标量被视为0维张量
张量操作
操作张量的方式与常规Python代码类似,但需要注意:
- 使用
for...in range()循环遍历张量元素 - 张量赋值必须使用切片语法(如
y[i] = ...) - 支持完整的算术运算和部分张量操作函数
动态与静态代码
FreeTensor代码分为两类:
动态代码:
- 实际参与编译的部分
- 包括张量操作和涉及张量的控制流语句
静态代码:
- 编译前执行的"元编程"部分
- 可以是任意Python代码
这种区分使得我们可以在保持高性能的同时,利用Python的灵活性构建复杂计算逻辑。
高级特性
JIT编译支持
当程序需要适应不同输入大小时,可以使用JIT编译:
@ft.optimize
def test(n: ft.JIT, a, b):
a: ft.Var[(n,), "int32"]
b: ft.Var[(n,), "int32"]
y = ft.empty((n,), "int32")
for i in range(n):
y[i] = a[i] + b[i]
return y
FreeTensor会自动为不同的n值生成优化代码,并缓存编译结果。
动态形状支持
对于运行时才能确定形状的情况,可以使用动态形状:
@ft.optimize
def test(n: ft.Var[(), "int32"], a, b):
a: ft.Var[(n,), "int32"]
b: ft.Var[(n,), "int32"]
y = ft.empty((n,), "int32")
for i in range(n):
y[i] = a[i] + b[i]
return y
这种方式只需编译一次,但某些优化可能无法应用。
PyTorch集成
FreeTensor可与PyTorch无缝协作:
@ft.optimize
def test(a: ft.Var[(n,), "int32"], b: ft.Var[(n,), "int32"]):
y = ft.empty((n,), "int32")
for i in range(n):
y[i] = a[i] + b[i]
return y
y = test(torch.tensor([1, 2, 3, 4], dtype=torch.int32),
torch.tensor([2, 3, 4, 5], dtype=torch.int32)).torch()
还支持自动微分集成:
@ft.optimize_to_pytorch
def test(a: ft.Var[(n,), "float32"], b: ft.Var[(n,), "float32"]):
y = ft.empty((n,), "float32")
for i in range(n):
y[i] = a[i] * b[i]
return y
总结
FreeTensor通过简洁的Python接口提供了高性能的张量计算能力。本文介绍了基本编程模式、核心概念和高级特性,帮助你快速上手FreeTensor开发。通过合理运用静态/动态代码分离、JIT编译等特性,你可以构建既灵活又高效的数值计算程序。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
暂无简介
Dart
778
193
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
357
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896