Django Classified安装与使用指南
2024-09-26 00:30:41作者:余洋婵Anita
项目概述
Django Classified是一款基于Django框架开发的分类广告应用。它支持多语言,具有图像上传功能、SEO优化、Google Analytics集成以及多种定制选项,适合作为构建分类信息网站的基础。此项目由Sergey Lyapustin维护,并在MIT许可下发布。
1. 目录结构及介绍
以下是django-classified项目的基本目录结构及其简要说明:
django-classified/
├── django_classified/ # 核心应用代码
│ ├── __init__.py
│ ├── admin.py # 管理员界面定义
│ ├── apps.py # 应用配置
│ ├── context_processors.py # 上下文处理器
│ ├── forms.py # 表单处理
│ ├── migrations/ # 数据库迁移文件夹
│ ├── models.py # 数据模型定义
│ ├── tests.py # 自动测试脚本
│ └── views.py # 视图函数
├── CONTRIBUTING.rst # 贡献者指导
├── demo_project/ # 示例项目
│ ├── ... # 示例项目的结构,包括settings.py等
├── docs/ # 文档资料
├── flake8 # 编码规范检查配置
├── gitignore # Git忽略文件列表
├── LICENSE.txt # 许可证文件
├── MANIFEST.in # 构建时包含的额外文件
├── README.md # 项目读我文件
├── requirements.txt # 项目依赖
├── setup.cfg # 包设置配置
├── setup.py # Python包的安装脚本
└── tox.ini # 多环境测试配置
2. 项目启动文件介绍
在Django Classified中,核心的启动逻辑并不直接通过单一“启动文件”管理,而是遵循Django的应用结构。开发者通常从一个名为manage.py的文件开始与项目的交互,这个文件位于示例项目demo_project内或者当你通过Django命令创建新的项目时自动生成的地方。通过运行python manage.py runserver,可以快速启动开发服务器。
3. 项目配置文件介绍
配置主要发生在两个层面:Django的全局settings.py(在示例项目demo_project/settings.py)和Django Classified提供的特定设置。
示例项目的settings.py
在demo_project/settings.py中,你需要对Django Classified进行以下基本配置:
- 添加
'django_classified'到INSTALLED_APPS。 - 设置
SITE_ID = 1,用于Django sites框架。 - 在URL配置中引入Django Classified的URL模式。
- 添加上下文处理器
'django_classified.context_processors.common_values'。 - 可选地,自定义如
DCF_ITEM_PER_USER_LIMIT,DCF_SITEMAP_LIMIT等特定于Django Classified的配置变量。
Django Classified的个性化配置
Django Classified允许通过你的settings.py来调整多项配置参数,例如:
DCF_SITE_NAME = '我的分类广告'
DCF_SITE_DESCRIPTION = '提供本地分类信息服务'
DCF_ITEM_PER_USER_LIMIT = 10 # 每个用户最多发布的物品数量
确保这些配置项根据你的需求进行适当的修改,以适应你的应用程序环境。
请注意,实际部署前应当详细阅读项目文档和官方指南,因为这里提供的只是基础概览,具体细节和最佳实践可能会有所不同。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76