CUTLASS项目中GEMM核函数的布局设计解析
2025-05-31 09:47:01作者:滑思眉Philip
在NVIDIA的CUTLASS项目中,GEMM(通用矩阵乘法)核函数的性能很大程度上取决于其内存布局的设计。本文将深入探讨CUTLASS中GEMM核函数支持的各种合法布局及其优化考量。
基础布局结构
CUTLASS中的GEMM核函数需要定义三种关键布局:
- 块布局(Block Layout):定义共享内存中数据块的组织方式
- 线程布局(Thread Layout):定义线程如何访问这些数据块
- 全局内存布局(Global Memory Layout):定义输入/输出矩阵在全局内存中的排布
布局合法性条件
任何合法的布局组合必须满足以下核心条件:
- 所有块布局和线程布局必须是静态的(编译时确定)
- 线程布局tA、tB和tC的大小必须相同
- 块布局在维度上必须匹配:blockA的第一维等于blockC的第一维(BLK_M),blockB的第一维等于blockC的第二维(BLK_N),blockA和blockB的第二维必须相同(BLK_K)
典型布局示例
在NT GEMM(矩阵A为行主序,矩阵B为列主序)中,常见的布局配置如下:
// 块大小定义
auto bM = Int<128>{}; // M维度块大小
auto bN = Int<128>{}; // N维度块大小
auto bK = Int<8>{}; // K维度块大小
// 块布局
auto sA = make_layout(make_shape(bM,bK)); // A矩阵块布局
auto sB = make_layout(make_shape(bN,bK)); // B矩阵块布局
auto sC = make_layout(make_shape(bM,bN)); // C矩阵块布局
// 线程布局
auto tA = make_layout(make_shape(Int<32>{}, Int<8>{})); // A矩阵线程布局
auto tB = make_layout(make_shape(Int<32>{}, Int<8>{})); // B矩阵线程布局
auto tC = make_layout(make_shape(Int<16>{}, Int<16>{})); // C矩阵线程布局
布局变体与优化
虽然上述布局能保证正确性,但性能可能不是最优的。对于TN GEMM(矩阵A为列主序,矩阵B为行主序),可以优化为K主序的共享内存布局和线程布局:
// 优化的K主序块布局
auto sA = make_layout(make_shape(bM,bK), make_stride(bK, Int<1>{})); // K主序
auto sB = make_layout(make_shape(bN,bK), make_stride(bK, Int<1>{})); // K主序
// 优化的K主序线程布局
auto tA = make_layout(make_shape(Int<8>{}, Int<32>{}), LayoutRight{}); // 8x32 K主序
auto tB = make_layout(make_shape(Int<8>{}, Int<32>{}), LayoutRight{}); // 8x32 K主序
这种优化能带来更好的数据局部性和更高效的全局内存加载模式。
高级应用:张量收缩
CUTLASS的布局系统不仅限于传统GEMM,还可以支持更通用的张量-张量收缩操作。通过精心设计的布局组合,可以实现各种复杂的数据访问模式,满足不同应用场景的需求。
总结
CUTLASS提供了灵活的布局配置系统,允许开发者根据具体问题和硬件特性定制最优的内存访问模式。理解这些布局设计原则对于实现高性能矩阵运算至关重要。在实际应用中,开发者需要权衡布局的通用性和特定硬件上的优化潜力,以达到最佳性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
351
419
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
615
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759