Neural-LP 的安装和配置教程
2025-05-18 05:34:32作者:昌雅子Ethen
1. 项目基础介绍
Neural-LP 是一个开源项目,它实现了神经逻辑编程(Neural Logic Programming),这是一种用于知识库推理的可微分逻辑规则学习方法。该项目基于以下论文发表的研究成果:
《Differentiable Learning of Logical Rules for Knowledge Base Reasoning》 作者:Fan Yang, Zhilin Yang, William W. Cohen 会议:NIPS 2017
该项目主要使用 Python 编程语言。
2. 项目使用的关键技术和框架
项目使用的关键技术是神经网络与逻辑规则的结合,通过可微分的逻辑规则进行知识库推理。在框架方面,项目主要依赖于以下几种:
- Numpy: 用于高性能的数值计算。
- Tensorflow: 用于构建和训练神经网络模型,版本为 1.0.1。
3. 项目安装和配置的准备工作及详细步骤
准备工作
在开始安装之前,请确保您的系统中已经安装了以下依赖:
- Python 2.7
- Numpy
- Tensorflow 1.0.1
安装步骤
-
克隆项目仓库
打开命令行界面,使用
git命令克隆项目:git clone https://github.com/fanyangxyz/Neural-LP.git -
设置环境变量
根据您的操作系统,设置环境变量以便于访问 Python 包和项目文件。
-
安装依赖
在项目根目录下,使用以下命令安装项目依赖:
pip install -r requirements.txt注意:确保您使用的是 Python 2.7 环境,因为项目不支持 Python 3。
-
运行示例
使用以下命令开始训练一个关于家庭关系的示例数据集,并将实验结果存储在
exps/demo/文件夹中:python src/main.py --datadir=datasets/family --exps_dir=exps/ --exp_name=demo训练过程可能需要大约 8 分钟。完成后,您可以在
exps/demo/目录下找到名为rules.txt的文件,该文件包含了学习到的逻辑规则。 -
评估结果
要评估预测结果,请按照以下步骤操作:
-
使用脚本
eval/collect_all_facts.sh收集所有事实:eval/collect_all_facts.sh datasets/family -
运行
get_truths.py脚本获取真实值:python eval/get_truths.py datasets/family -
使用
evaluate.py脚本评估测试预测:python eval/evaluate.py --preds=exps/demo/test_predictions.txt --truths=datasets/family/truths.pckl
-
按照以上步骤,您应该能够成功安装和配置 Neural-LP 项目,并运行示例以及评估结果。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178