Evidence项目中的Chromatic视觉测试问题分析与解决方案
2025-06-09 12:47:36作者:虞亚竹Luna
背景介绍
Evidence项目团队在尝试全面启用Chromatic进行UI视觉测试时遇到了一系列技术挑战。Chromatic作为一款专业的UI测试工具,能够捕捉组件在不同状态下的视觉差异,但在Evidence项目中应用时却出现了多个需要解决的问题。
主要问题分析
1. 数据一致性挑战
项目中发现Faker数据源在相同种子运行时未能正确输出一致的数据。这直接影响了测试的可重复性,因为视觉测试依赖于每次运行都能生成相同的UI状态进行比对。
2. Storybook配置不一致
Storybook的配置存在多种不一致的模式:
- 部分仍在使用已废弃的
<Meta/>标签 - 数据获取方式不统一:有的使用
{@const data =模式,有的则导入faker查询 - 团队更倾向于推荐使用
{@const}模式来保持一致性
3. 图表渲染差异问题
特别值得注意的是Recharts组件在Chromatic测试中表现出的问题:
- 文本标签出现1像素的垂直方向拉伸/压缩
- 轴标签与参考线标签呈现相反的渲染差异
- 增大字体大小时问题依然存在但表现不同
技术解决方案
数据一致性的解决路径
为确保测试可靠性,团队需要:
- 修复Faker数据源的种子实现,确保相同种子产生相同输出
- 统一采用
{@const}模式定义测试数据 - 建立数据验证机制,确保测试前数据符合预期
Storybook配置标准化
团队决定:
- 全面移除废弃的
<Meta/>标签 - 统一采用
{@const}模式定义测试数据 - 建立配置检查机制,防止不一致的模式混用
图表测试的应对策略
针对Recharts的渲染问题:
- 与Chromatic支持团队沟通,确认这是已知的基线问题
- 暂时接受微小差异,等待Chromatic的Capture stack升级
- 考虑补充单元测试验证组件逻辑,弥补视觉测试的不足
经验总结
Evidence项目的这一案例展示了在复杂数据可视化项目中实施视觉测试的挑战。团队采取了分层次的解决方案:
- 基础层:确保测试数据的一致性和可靠性
- 配置层:统一测试工具的使用模式
- 工具层:与测试服务提供商协作解决底层技术限制
这种系统性的问题分析和解决方案为其他类似项目提供了有价值的参考,特别是在处理数据可视化组件的视觉测试时,需要平衡工具限制与测试需求之间的关系。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120