Security Onion项目中Sigma事件模块的字段增强解析
背景介绍
Security Onion作为一个开源的网络安全监控系统,其事件处理能力对于安全分析至关重要。近期项目中针对Sigma事件模块进行了字段增强,这一改进显著提升了安全事件的可见性和分析效率。
新增字段详解
本次更新为Sigma事件模块添加了多个关键字段,这些字段可以分为以下几类:
-
基础信息类字段:
- soc_timestamp:记录事件发生的时间戳
- rule.name:触发事件的规则名称
- event.severity_label:事件严重程度标签
-
网络连接相关字段:
- event_data.source.ip:源IP地址
- event_data.source.port:源端口
- event_data.destination.host:目标主机
- event_data.destination.port:目标端口
-
进程相关字段:
- event_data.process.executable:可执行文件路径
- event_data.process.pid:进程ID
-
数据集标识:
- event_data.event.dataset:标识事件所属的数据集
技术价值分析
这些新增字段为安全分析师提供了更全面的上下文信息:
-
事件溯源能力增强:通过完整的网络连接信息和进程信息,分析师可以更准确地追踪攻击链。
-
关联分析便利性:新增的字段使得不同事件之间的关联分析变得更加直观,特别是通过进程ID和网络连接信息。
-
严重性评估优化:明确的事件严重程度标签帮助分析师快速确定事件优先级。
-
数据集分类:数据集标识字段使得大规模日志中的事件分类更加清晰。
实际应用场景
在Security Onion的多个核心功能模块中,这些新增字段发挥着重要作用:
-
告警分析:安全团队可以快速查看告警的完整上下文,包括触发的规则、严重程度以及涉及的进程和网络连接。
-
仪表盘展示:新增字段可以作为仪表盘中的关键指标,提供更丰富的安全态势可视化。
-
威胁狩猎:狩猎过程中,分析师可以利用这些字段构建更精确的查询条件,缩小调查范围。
实现验证
更新后经过严格测试验证:
-
在告警界面中,所有新增字段均正确显示,提供了完整的事件上下文。
-
仪表盘功能中,新增字段可作为筛选条件和展示列,增强了数据分析能力。
-
查询性能测试表明,新增字段没有对系统性能产生负面影响。
总结
Security Onion对Sigma事件模块的字段增强是一项重要的功能改进,它显著提升了安全事件的可见性和分析效率。这些新增字段为安全团队提供了更丰富的事件上下文,使得威胁检测、事件响应和威胁狩猎等工作更加高效准确。这一改进体现了Security Onion项目对用户体验和安全分析需求的持续关注,也展示了其作为开源安全监控平台的成熟度不断提升。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00