QwenLM/Qwen项目中Qwen-72B-Int4模型推理速度优化实践
2025-05-12 16:21:40作者:鲍丁臣Ursa
问题背景
在使用QwenLM/Qwen项目中的Qwen-72B-Int4模型进行推理测试时,开发者发现实际推理速度远低于官方宣称的性能指标。官方文档显示该模型应能达到11.32 tokens/s的推理速度,但在实际测试中仅获得约0.56 tokens/s的性能表现。
环境配置分析
测试环境配置如下:
- 硬件:3块NVIDIA A100 80GB GPU
- 操作系统:Ubuntu 22.04
- Python版本:3.10.12
- PyTorch版本:2.1.2(CUDA 11.8)
- Transformers版本:4.36.2
性能瓶颈诊断
经过深入分析,发现导致性能低下的主要原因有两个:
-
多卡并行推理模式问题:
- 使用Transformers库默认的多卡并行方式时,实际上采用的是原始的模型并行策略
- 这种模式下,每个时间点只有一块GPU在工作,其他GPU处于闲置状态
- 不仅无法发挥多卡优势,反而会因为通信开销导致性能下降
-
AutoGPTQ量化实现问题:
- 未正确安装或配置AutoGPTQ的优化内核
- 导致量化推理无法使用最优化的计算路径
- 退回到非优化的实现方式,严重影响性能
解决方案
针对上述问题,推荐以下优化措施:
1. 单卡推理优化
对于Qwen-72B-Int4这样的超大模型,建议优先尝试单卡推理:
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="cuda:0", # 明确指定单卡
trust_remote_code=True
).eval()
2. AutoGPTQ正确安装
必须确保AutoGPTQ与当前环境的CUDA和PyTorch版本完全匹配。安装时应:
- 根据CUDA版本选择对应的AutoGPTQ预编译包
- 确认PyTorch版本兼容性
- 推荐使用官方提供的wheel包
3. 使用专用加载方式
对于量化模型,应使用AutoGPTQ专用加载方式:
from auto_gptq import AutoGPTQForCausalLM
model = AutoGPTQForCausalLM.from_quantized(
model_path,
device="cuda:0",
trust_remote_code=True,
use_safetensors=True,
use_flash_attn=False # 根据硬件支持情况调整
).eval()
性能对比
优化前后的性能对比数据:
| 配置 | 推理速度(tokens/s) | GPU内存占用 |
|---|---|---|
| 原始多卡配置 | 0.56 | 10.4GB |
| 单卡配置 | 0.68 | 49.4GB |
| 优化后单卡 | ~11.3(预期) | 待实测 |
实践建议
- 环境隔离:建议使用conda或venv创建独立环境,避免依赖冲突
- 版本匹配:严格保持PyTorch、CUDA和AutoGPTQ版本的兼容性
- 基准测试:在优化前后进行对比测试,记录详细性能数据
- 硬件选择:对于72B模型,建议至少使用A100 80GB级别显卡
- 监控工具:使用nvidia-smi等工具实时监控GPU利用率
总结
Qwen-72B-Int4模型的性能优化关键在于正确配置量化推理环境和选择合适的部署策略。通过解决AutoGPTQ的安装问题和调整并行策略,可以显著提升模型推理速度,达到接近官方宣称的性能指标。对于大模型部署,环境配置的精确性往往比硬件规格更重要。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322