QwenLM/Qwen项目中Qwen-72B-Int4模型推理速度优化实践
2025-05-12 06:34:49作者:鲍丁臣Ursa
问题背景
在使用QwenLM/Qwen项目中的Qwen-72B-Int4模型进行推理测试时,开发者发现实际推理速度远低于官方宣称的性能指标。官方文档显示该模型应能达到11.32 tokens/s的推理速度,但在实际测试中仅获得约0.56 tokens/s的性能表现。
环境配置分析
测试环境配置如下:
- 硬件:3块NVIDIA A100 80GB GPU
- 操作系统:Ubuntu 22.04
- Python版本:3.10.12
- PyTorch版本:2.1.2(CUDA 11.8)
- Transformers版本:4.36.2
性能瓶颈诊断
经过深入分析,发现导致性能低下的主要原因有两个:
-
多卡并行推理模式问题:
- 使用Transformers库默认的多卡并行方式时,实际上采用的是原始的模型并行策略
- 这种模式下,每个时间点只有一块GPU在工作,其他GPU处于闲置状态
- 不仅无法发挥多卡优势,反而会因为通信开销导致性能下降
-
AutoGPTQ量化实现问题:
- 未正确安装或配置AutoGPTQ的优化内核
- 导致量化推理无法使用最优化的计算路径
- 退回到非优化的实现方式,严重影响性能
解决方案
针对上述问题,推荐以下优化措施:
1. 单卡推理优化
对于Qwen-72B-Int4这样的超大模型,建议优先尝试单卡推理:
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="cuda:0", # 明确指定单卡
trust_remote_code=True
).eval()
2. AutoGPTQ正确安装
必须确保AutoGPTQ与当前环境的CUDA和PyTorch版本完全匹配。安装时应:
- 根据CUDA版本选择对应的AutoGPTQ预编译包
- 确认PyTorch版本兼容性
- 推荐使用官方提供的wheel包
3. 使用专用加载方式
对于量化模型,应使用AutoGPTQ专用加载方式:
from auto_gptq import AutoGPTQForCausalLM
model = AutoGPTQForCausalLM.from_quantized(
model_path,
device="cuda:0",
trust_remote_code=True,
use_safetensors=True,
use_flash_attn=False # 根据硬件支持情况调整
).eval()
性能对比
优化前后的性能对比数据:
配置 | 推理速度(tokens/s) | GPU内存占用 |
---|---|---|
原始多卡配置 | 0.56 | 10.4GB |
单卡配置 | 0.68 | 49.4GB |
优化后单卡 | ~11.3(预期) | 待实测 |
实践建议
- 环境隔离:建议使用conda或venv创建独立环境,避免依赖冲突
- 版本匹配:严格保持PyTorch、CUDA和AutoGPTQ版本的兼容性
- 基准测试:在优化前后进行对比测试,记录详细性能数据
- 硬件选择:对于72B模型,建议至少使用A100 80GB级别显卡
- 监控工具:使用nvidia-smi等工具实时监控GPU利用率
总结
Qwen-72B-Int4模型的性能优化关键在于正确配置量化推理环境和选择合适的部署策略。通过解决AutoGPTQ的安装问题和调整并行策略,可以显著提升模型推理速度,达到接近官方宣称的性能指标。对于大模型部署,环境配置的精确性往往比硬件规格更重要。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0328- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
178
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
288
323

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
600
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3