Open-R1项目中GRPO训练格式奖励下降问题分析与解决方案
问题背景
在Open-R1项目中使用GRPO方法对Qwen2.5-1.5B-Instruct模型进行训练时,研究人员发现了一个值得关注的现象:当使用NuminaMath-TIR数据集进行单epoch训练时,格式奖励(format reward)在约50个训练步骤后会急剧下降至零值。与此同时,模型在gpqa:diamond指标上的表现也从基础模型的0.3081下降到了0.2424。
问题诊断
通过深入分析,研究人员发现了几个关键问题点:
-
输出长度限制:模型生成的输出内容超出了预设的max_completion_length(1024个token),导致正则表达式无法正确匹配预期的格式模式。训练日志显示,当输出长度超过限制时,格式奖励的提取就会失败。
-
基础模型对齐问题:Qwen2.5-1.5B-Instruct作为基础模型(未经对齐训练),其输出格式无法满足奖励函数要求的特定模式(特别是无法将答案放入\boxed{}格式中)。
-
正则表达式匹配:定义的格式奖励函数使用正则表达式检查输出是否包含特定的XML风格标签结构(...后跟...),但过长的输出会导致匹配失败。
解决方案验证
研究人员尝试了两种有效的解决方案:
-
升级基础模型:将基础模型更换为数学能力更强的Qwen2.5-Math-7B,配合NuminaMath-TIR数据集进行训练。实验结果表明,这种组合能够维持稳定的格式奖励,解决了奖励下降的问题。
-
添加系统提示:在配置文件中加入适当的系统提示(system prompt),引导模型生成符合要求的输出格式。这种方法理论上可以改善基础模型的输出对齐问题。
技术建议
对于遇到类似问题的研究人员,建议考虑以下技术方案:
-
输出长度控制:合理设置max_completion_length参数,确保其足够容纳完整的思考过程和答案,同时不超过模型的处理能力。
-
模型选择:针对数学推理任务,优先选择经过数学领域预训练或微调的模型作为基础模型。
-
奖励函数设计:设计更鲁棒的奖励函数,能够处理输出截断情况,或者实现渐进式的格式奖励。
-
渐进式训练:可以考虑先进行SFT(监督微调)使模型初步掌握所需格式,再进行GRPO训练。
结论
Open-R1项目中的这一案例展示了强化学习训练过程中奖励设计的重要性。通过合理的模型选择和技术调整,可以有效解决格式奖励下降的问题。这一经验对于其他基于人类反馈的强化学习(RLHF)项目也具有参考价值,特别是在处理结构化输出和特定领域任务时。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0330- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









