Open-R1项目中GRPO训练格式奖励下降问题分析与解决方案
问题背景
在Open-R1项目中使用GRPO方法对Qwen2.5-1.5B-Instruct模型进行训练时,研究人员发现了一个值得关注的现象:当使用NuminaMath-TIR数据集进行单epoch训练时,格式奖励(format reward)在约50个训练步骤后会急剧下降至零值。与此同时,模型在gpqa:diamond指标上的表现也从基础模型的0.3081下降到了0.2424。
问题诊断
通过深入分析,研究人员发现了几个关键问题点:
-
输出长度限制:模型生成的输出内容超出了预设的max_completion_length(1024个token),导致正则表达式无法正确匹配预期的格式模式。训练日志显示,当输出长度超过限制时,格式奖励的提取就会失败。
-
基础模型对齐问题:Qwen2.5-1.5B-Instruct作为基础模型(未经对齐训练),其输出格式无法满足奖励函数要求的特定模式(特别是无法将答案放入\boxed{}格式中)。
-
正则表达式匹配:定义的格式奖励函数使用正则表达式检查输出是否包含特定的XML风格标签结构(...后跟...),但过长的输出会导致匹配失败。
解决方案验证
研究人员尝试了两种有效的解决方案:
-
升级基础模型:将基础模型更换为数学能力更强的Qwen2.5-Math-7B,配合NuminaMath-TIR数据集进行训练。实验结果表明,这种组合能够维持稳定的格式奖励,解决了奖励下降的问题。
-
添加系统提示:在配置文件中加入适当的系统提示(system prompt),引导模型生成符合要求的输出格式。这种方法理论上可以改善基础模型的输出对齐问题。
技术建议
对于遇到类似问题的研究人员,建议考虑以下技术方案:
-
输出长度控制:合理设置max_completion_length参数,确保其足够容纳完整的思考过程和答案,同时不超过模型的处理能力。
-
模型选择:针对数学推理任务,优先选择经过数学领域预训练或微调的模型作为基础模型。
-
奖励函数设计:设计更鲁棒的奖励函数,能够处理输出截断情况,或者实现渐进式的格式奖励。
-
渐进式训练:可以考虑先进行SFT(监督微调)使模型初步掌握所需格式,再进行GRPO训练。
结论
Open-R1项目中的这一案例展示了强化学习训练过程中奖励设计的重要性。通过合理的模型选择和技术调整,可以有效解决格式奖励下降的问题。这一经验对于其他基于人类反馈的强化学习(RLHF)项目也具有参考价值,特别是在处理结构化输出和特定领域任务时。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00