XTuner 大规模增量训练数据离线处理方案解析
2025-06-13 08:54:15作者:晏闻田Solitary
背景介绍
在大型语言模型训练过程中,数据预处理环节往往成为性能瓶颈,特别是当面对上亿条训练数据时。XTuner 作为一个高效的模型训练工具,针对这一挑战提供了专门的解决方案。本文将深入分析 XTuner 中处理海量训练数据的优化方法。
问题分析
当训练数据量达到上亿级别时,传统的实时数据处理方式会面临以下挑战:
- 预处理耗时过长:仅数据映射(map)操作就可能需要十几个小时
- 重复计算浪费:每次训练都需要重新处理原始数据
- 资源利用率低:CPU密集型任务可能无法充分利用计算资源
XTuner 的离线处理方案
XTuner 提供了专门的工具来处理大规模训练数据的离线预处理:
核心工具
process_untokenized_datasets.py 脚本是离线处理的核心,它能够:
- 提前完成所有数据预处理工作
- 生成可直接用于训练的处理后数据
- 自动创建适配离线数据的配置文件
使用流程
- 执行离线处理命令:
python xtuner/tools/process_untokenized_datasets.py your_config_name.py \
--save-folder /folder/to/save/processed/dataset
-
生成新配置文件:
- 工具会在原配置同级目录创建
your_config_name_modified.py - 后续训练必须使用这个新生成的配置文件
- 工具会在原配置同级目录创建
-
资源优化建议:
- 使用 Slurm 等调度系统时申请尽可能多的 CPU 资源
- 根据数据规模合理预估存储空间需求
技术优势
- 一次处理,多次使用:虽然首次处理耗时不变,但后续训练可直接读取预处理结果
- 资源解耦:将计算密集型的数据处理与训练过程分离
- 配置自动化:自动生成适配离线数据的训练配置,减少人为错误
最佳实践建议
- 存储规划:确保有足够的存储空间保存预处理后的数据
- 版本管理:对预处理数据和对应配置进行版本控制
- 监控机制:对大规模数据处理任务实施进度监控
- 验证流程:预处理完成后进行小规模训练验证数据正确性
总结
XTuner 的离线数据处理方案为大规模语言模型训练提供了重要支持。通过将耗时的预处理工作提前完成,显著提升了后续训练效率,特别是在需要多次实验调参的场景下,这种优势更为明显。对于数据量在亿级别以上的项目,采用离线预处理策略可以节省大量计算资源和时间成本。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 DLL修复工具免费版 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19