gsl-lite项目v1.0.0版本发布:现代C++安全编程的重要升级
gsl-lite是一个轻量级的C++库,旨在为开发者提供Guidelines Support Library(GSL)的核心功能,同时保持对旧版C++标准的兼容性。该项目最初由微软GSL衍生而来,但经过多年发展已经形成了自己的特色,特别适合需要在多种C++标准下工作的项目。
重大变更:命名空间与头文件结构调整
gsl-lite v1.0.0版本引入了一项重要的架构调整:现在所有符号都位于gsl_lite
命名空间下,主头文件也改为<gsl-lite/gsl-lite.hpp>
。这一变化使得gsl-lite能够与微软GSL或其他GSL实现共存于同一项目中。
为了平滑过渡,项目提供了GSL兼容模式,通过定义gsl_FEATURE_GSL_COMPATIBILITY_MODE=1
可以启用。但需要注意的是,这种模式不应该在库的公共头文件中使用,因为它会阻止在同一翻译单元中使用微软GSL。
对于现有代码,项目提供了详细的迁移指南,建议开发者逐步迁移到新的命名空间和头文件结构,或者明确启用GSL兼容模式。
span实现的重大改进
v1.0.0版本对span
类进行了全面升级,现在支持静态范围(static extents)。这一改进是通过从微软GSL中适配span
实现并向后移植到支持C++98和旧编译器的版本中实现的。
另一个重要变化是span::iterator
现在是一个完整的类而不仅仅是一个指针。迭代器操作现在使用gsl_ExpectsDebug()
进行检查,提高了安全性。
配置选项的默认值调整
新版本对多个配置选项的默认值进行了调整,以更好地符合现代C++编程实践:
gsl_FEATURE_STRING_SPAN
默认禁用,因为字符串span已不再是GSL规范的一部分gsl_FEATURE_BYTE
默认禁用,因为C++17已经引入了std::byte
- 契约检查的默认行为改为
gsl_CONFIG_CONTRACT_VIOLATION_ASSERTS
,与assert()
宏的行为一致 not_null
的构造函数现在默认是显式的,提高了类型安全性
新增功能与改进
narrow<>()
和narrow_failfast<>()
函数现在支持非全序类型,如std::complex<>
,这使得这些函数在更广泛的场景下可用。
项目还增加了对ABI兼容性的检查机制。在Windows平台上使用MSVC时,gsl-lite会使用#pragma detect_mismatch()
在链接时诊断ABI不兼容问题。对于其他平台,当配置选项可能改变二进制接口时,项目会发出警告,开发者可以通过定义gsl_CONFIG_ACKNOWLEDGE_NONSTANDARD_ABI
来明确确认这些变更。
废弃与移除的功能
v1.0.0版本清理了大量过时或不再推荐使用的功能:
- 移除了不安全的
span
成员函数as_span<>()
- 移除了
Owner()
和implicit
宏 - 移除了C++98下的
finally()
,on_error()
和on_return()
实现 - 移除了多个已弃用的函数,如
as_writeable_bytes()
和各种span构造函数重载
总结
gsl-lite v1.0.0版本标志着该项目的一个重要里程碑。通过引入命名空间隔离、改进span实现、调整默认配置选项以及清理过时功能,该项目在保持向后兼容性的同时,为现代C++安全编程提供了更强大、更一致的支持。对于正在使用gsl-lite的项目,建议仔细阅读迁移指南,逐步适应这些变化,以充分利用新版本带来的改进和增强。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









