DataFusion Comet 0.7.0版本技术解析与核心改进
DataFusion Comet作为Apache生态系统中一个高性能的查询执行引擎,专为Spark SQL设计,通过原生代码执行提供显著的性能提升。该项目基于Rust语言开发,充分利用了现代硬件特性,同时保持了与Spark生态系统的无缝集成。
性能优化与内存管理改进
0.7.0版本在内存管理方面做出了多项重要改进。首先,通过重构CometShuffleMemoryAllocator逻辑,简化了内存分配机制,移除了冗余配置项,使得内存使用更加高效。其次,PartitionBuffers不再拥有独立的MemoryConsumer,这一改变减少了内存开销并提高了整体稳定性。
在原生shuffle实现方面,该版本成功将内存开销降低了50%,这对于处理大规模数据集尤为重要。同时,修复了spilled_bytes指标计算问题,并减少了shuffle spill文件数量,这些改进共同提升了shuffle阶段的可靠性和性能。
实验性功能增强
本版本显著增强了实验性原生扫描功能。针对native_datafusion和native_iceberg_compat两种扫描方式,开发团队进行了多项修复和改进:
- 简化了parquet_support.rs中的类型转换逻辑,使代码更加清晰
- 修复了单元测试失败问题,提高了稳定性
- 从ParquetFileMetrics和FileStreamMetrics中提取CometNativeScan指标
- 增加了对远程HDFS的支持,扩展了数据源兼容性
这些改进为将来将实验性功能转为正式功能奠定了基础。
函数支持与表达式扩展
0.7.0版本在SQL函数支持方面取得了进展:
- 新增IntegralDivide函数,提供整数除法运算能力
- 完整支持decimal到decimal的转换操作
- 增加了rpad字符串函数
- 实现了array_compact数组函数
- 加强了除法运算的溢出检查机制
这些新增函数进一步提升了与Spark SQL的兼容性,使更多现有查询能够直接利用Comet引擎执行。
稳定性与测试改进
开发团队在本版本中加强了测试覆盖率和稳定性:
- 将实验性原生扫描纳入CometReadBenchmark基准测试
- 为稳定性计划测试改进了文档说明
- 修复了Spark 3.5的测试兼容性问题
- 启用了native_datafusion和native_iceberg_compat的CI检查
这些工作确保了新功能的可靠性和一致性,为生产环境使用提供了更强保障。
依赖项升级
0.7.0版本同步更新了多个关键依赖:
- 升级至DataFusion 46.0.0正式版
- 采用Spark 3.5.4作为基础版本
- 更新protobuf至3.25.5
- 升级guava到33.2.1-jre
这些升级带来了上游项目的最新改进和安全修复,同时保持了良好的向后兼容性。
总结
DataFusion Comet 0.7.0版本在性能、功能和稳定性方面都取得了显著进步。特别是内存管理的优化和实验性原生扫描功能的增强,为后续版本的发展奠定了坚实基础。随着函数支持的不断完善和测试覆盖率的提高,该项目正逐步成为Spark生态系统中一个成熟的高性能替代执行引擎。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00