OPC UA .NET Standard 1.5.376版本发布:支持持久订阅与1.05.04节点集更新
OPC UA .NET Standard是OPC基金会推出的一个开源实现,它基于.NET Standard技术栈,为开发者提供了构建OPC UA客户端和服务器的完整工具包。该项目严格遵循OPC UA规范,支持跨平台部署,广泛应用于工业自动化、物联网等领域的数据采集和设备互联场景。
核心更新内容
本次1.5.376版本是一个重要的维护更新,主要围绕持久订阅功能实现和1.05.04节点集支持展开。持久订阅是OPC UA规范中的关键特性,它允许订阅在服务器重启后继续保持有效,确保关键监控数据不丢失。同时,本次更新也包含了对最新1.05.04节点集的支持,确保与最新规范保持同步。
技术特性详解
持久订阅实现机制
持久订阅功能的实现涉及服务器端的多个组件协同工作。服务器现在提供了ISubscriptionManager接口,开发者可以通过实现该接口来定制订阅状态的持久化存储策略。参考服务器中已经包含了基于文件系统的示例实现,展示了如何将订阅队列、订阅状态和监控项数据持久化到磁盘。
当服务器重启时,系统会自动从持久化存储中恢复之前的订阅状态。这一过程对客户端完全透明,客户端无需做任何特殊处理即可继续接收数据更新。这种机制特别适合需要高可靠性的工业场景,确保关键监控数据不会因服务器重启而丢失。
1.05.04节点集更新
本次更新完整集成了1.05.04版本的节点集,这是OPC UA规范的最新维护版本。节点集更新包括:
- 新增了DesignToolOnly可选属性,为建模工具提供了更多元数据支持
- 修正了BaseVariableState的ValueRank属性默认值,现在严格遵循规范设置为ValueRanks.Any
- 更新了XML编解码逻辑,确保矩阵类型变量的编码完全符合规范要求
安全增强
在安全方面,本次更新做出了重要改进:
- 强制要求有效的证书存储配置,服务器启动时会验证证书存储的可用性
- 改进了UserIdentityToken的内部实现,现在使用UTF-8编码的字节数组存储未加密密码,提高了安全性
- 当匿名令牌不被允许时,系统会正确返回BadIdentityTokenInvalid错误
开发者注意事项
潜在兼容性问题
开发者需要注意以下可能的兼容性变化:
- Variant中矩阵元素的XML编码格式已更新,与规范完全一致,可能影响现有的XML序列化/反序列化逻辑
- 服务器接口增加了持久订阅支持的相关方法,自定义服务器实现需要相应更新
- 证书存储配置现在成为强制要求,没有有效配置的服务器将无法启动
新API使用指南
对于希望使用持久订阅功能的开发者,可以参考以下代码片段:
// 创建支持持久化的订阅
var subscription = new Subscription(opcClient) {
PublishingInterval = 1000,
Priority = 100,
DisplayName = "持久订阅示例",
PublishingEnabled = true,
// 设置持久化属性
MaxNotificationsPerPublish = 1000,
LifetimeCount = 12000,
KeepAliveCount = 3000
};
性能优化与改进
本次更新还包括多项内部优化:
- 改进了IEncoder的上下文管理,现在支持在临时作用域中设置上下文,方便在自定义代码中使用编码器
- 优化了订阅管理的内存使用效率
- 提升了服务器重启时的订阅恢复速度
总结
1.5.376版本是OPC UA .NET Standard项目的一个重要里程碑,特别是持久订阅功能的实现大大提升了系统的可靠性。对于工业物联网应用开发者来说,这些更新意味着更稳定、更符合规范的工具支持。建议所有使用该库的项目评估升级必要性,特别是那些需要高可用性订阅功能的场景。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00