Pandera v0.24.0发布:专注数据验证的Python库迎来重大架构调整
2025-06-14 01:45:02作者:瞿蔚英Wynne
Pandera是一个强大的Python数据验证库,它允许开发者为pandas、polars等数据框架定义严格的数据模式(schema),确保数据质量并防止数据处理过程中出现意外错误。Pandera通过声明式的方式定义数据约束,支持列类型检查、值范围验证、唯一性约束等多种验证规则。
重大架构变更:Pandas成为可选依赖
在最新发布的v0.24.0版本中,Pandera做出了一个重大架构决策:将pandas和numpy从核心依赖中移除,转而作为可选依赖提供。这一变化意味着:
-
安装方式变化:用户需要显式安装pandas或使用pandas额外依赖项
pip install 'pandera[pandas]' # 推荐方式 # 或者 pip install pandas pandera -
导入路径变更:所有与pandas相关的符号现在都迁移到了
pandera.pandas模块中# 旧导入方式(将逐步弃用) import pandera as pa # 新导入方式 import pandera.pandas as pa
这一变化虽然带来了短暂的迁移成本,但从长远看有以下优势:
- 减少不必要的依赖,使核心库更轻量
- 为支持更多数据框架类型(如polars)提供更好的架构基础
- 让用户更明确地选择所需功能
核心功能改进
Polars支持增强
- 多维数组类型处理:修复了处理polars多维数组类型时的bug
- 数据采样验证:修正了
validate(sample=x)在polars DataFrame上的行为 - 空DataFrame创建:新增了创建空polars DataFrame的功能
- 列过滤一致性:修复了在Polars后端使用
add_missing_columns时的列过滤不一致问题
验证流程优化
- 解析器执行顺序:确保自定义解析器在获取列信息前运行
- 类型转换前解析:解析器现在会在类型强制转换之前应用
- DataFrame级检查:改进了对polars DataFrame级检查的支持
性能与稳定性
- 线程安全:使DataFrameModel的MODEL_CACHE具备线程感知能力
- 正则表达式支持:polars现在支持对非必需列使用正则表达式
- 分类类型处理:改进了polars分类类型的强制转换处理
新功能亮点
索引操作增强
新增了三个实用的索引操作方法:
update_index:更新单个索引update_indexes:更新多个索引rename_indexes:重命名索引
这些方法使得在保持数据验证的同时操作索引变得更加方便。
序列化改进
修复了检查函数序列化的问题,现在支持每个检查函数有多个检查项,提高了配置的灵活性和可维护性。
开发者体验提升
- 代码质量:扩展了mypy静态类型检查对polars代码的覆盖范围
- 文档修正:修正了文档中关于polars_version的错误引用
- 无效行处理:改进了
drop_invalid_rows的行为,使其正确处理模式级错误
迁移建议
对于现有用户,建议尽快进行以下迁移:
- 更新安装命令,显式包含pandas依赖
- 将导入语句从
import pandera as pa改为import pandera.pandas as pa - 检查是否有代码依赖于pandas作为pandera的间接依赖
虽然旧版导入方式目前仍能工作并仅发出警告,但将在未来版本(预计v0.29.0)中完全移除。
总结
Pandera v0.24.0标志着该项目向更模块化、更灵活架构迈出的重要一步。通过将pandas变为可选依赖,项目为支持更多数据框架类型奠定了基础,同时保持了核心验证功能的强大和易用性。对于数据工程师和科学家来说,这一版本不仅带来了更好的polars支持,还通过多项改进提升了整体使用体验。建议所有用户规划升级路径,以充分利用新版本的优势。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.83 K
React Native鸿蒙化仓库
JavaScript
259
322