YOLOv9训练中hyp.scratch-low.yaml缺失问题的解决方案
2025-05-25 21:18:57作者:胡易黎Nicole
在YOLOv9模型训练过程中,开发者可能会遇到一个常见的错误提示:"AssertionError: File not found: data\hyps\hyp.scratch-low.yaml"。这个问题通常是由于缺少必要的超参数配置文件导致的。本文将详细分析这个问题,并提供完整的解决方案。
问题分析
YOLOv9作为目标检测领域的前沿模型,其训练过程需要依赖多个配置文件来定义训练参数。其中,hyp.scratch-low.yaml文件专门用于存储训练过程中的超参数设置。当系统找不到这个文件时,训练流程就会中断并报错。
解决方案
要解决这个问题,我们需要在指定路径创建这个超参数配置文件。具体步骤如下:
- 在项目目录下创建文件路径:
yolov9/data/hyps/ - 在该路径下新建文件
hyp.scratch-low.yaml - 将以下内容复制到文件中:
# 学习率相关参数
lr0: 0.01 # 初始学习率
lrf: 0.1 # 最终学习率 = lr0 * lrf
momentum: 0.937 # SGD动量
weight_decay: 0.0005 # 权重衰减系数
# 预热训练参数
warmup_epochs: 3.0 # 预热epoch数
warmup_momentum: 0.8 # 预热初始动量
warmup_bias_lr: 0.1 # 预热初始偏置学习率
# 损失函数权重
box: 0.05 # 边界框损失权重
cls: 0.3 # 分类损失权重
cls_pw: 1.0 # 分类BCE正样本权重
obj: 0.7 # 目标存在损失权重
obj_pw: 1.0 # 目标存在BCE正样本权重
# 训练参数
iou_t: 0.2 # IoU训练阈值
anchor_t: 4.0 # anchor-multiple阈值
fl_gamma: 0.0 # focal loss gamma
# 图像增强参数
hsv_h: 0.015 # 图像色调(Hue)增强幅度
hsv_s: 0.7 # 图像饱和度(Saturation)增强幅度
hsv_v: 0.4 # 图像亮度(Value)增强幅度
# 几何变换参数
degrees: 0.0 # 旋转角度范围
translate: 0.1 # 平移范围
scale: 0.9 # 缩放范围
shear: 0.0 # 剪切范围
perspective: 0.0 # 透视变换范围
flipud: 0.0 # 上下翻转概率
fliplr: 0.5 # 左右翻转概率
# 数据增强策略
mosaic: 1.0 # mosaic数据增强概率
mixup: 0.1 # mixup数据增强概率
copy_paste: 0.1 # copy-paste数据增强概率
参数详解
这个配置文件包含了YOLOv9训练过程中的所有关键超参数,主要分为以下几类:
- 学习率设置:控制模型参数更新的步长大小,包括初始学习率、最终学习率等。
- 优化器参数:如动量、权重衰减等,影响优化过程。
- 损失函数权重:平衡不同损失项对总损失的贡献。
- 数据增强:包括颜色变换、几何变换等,提高模型泛化能力。
- 训练策略:如mosaic、mixup等高级数据增强技术。
注意事项
- 这些参数是YOLOv9作者经过大量实验得出的默认值,适合大多数场景。
- 对于特定任务,可以适当调整这些参数以获得更好的性能。
- 修改参数后建议进行小规模实验验证效果,再应用到完整训练中。
- 确保文件路径和名称完全匹配,YOLOv9对路径要求严格。
通过正确配置这个文件,可以解决训练过程中的报错问题,使模型训练顺利进行。对于YOLOv9初学者来说,理解这些参数的含义也有助于后续的模型调优工作。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134