在Runpod上部署MAGI-1项目的完整指南
2025-06-30 20:27:17作者:韦蓉瑛
本文将详细介绍如何在Runpod云平台上部署MAGI-1项目,并解决常见的安装问题和配置错误。MAGI-1是一个基于PyTorch的多模态AI项目,需要特定的环境配置才能正常运行。
环境准备
首先需要设置基本环境变量和时区配置:
export HF_HOME=/workspace/
export TZ=America/Los_Angeles
创建Python虚拟环境并安装PyTorch基础包:
python -m venv venv
source /workspace/venv/bin/activate
pip install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0
依赖安装
安装必要的系统工具和Python包:
apt-get update
apt-get install -y ffmpeg
pip install ffmpeg ffmpeg-python
克隆项目仓库并安装依赖:
git clone https://github.com/SandAI-org/MAGI-1
cd MAGI-1
pip install --upgrade wheel setuptools setuptools_scm packaging
特别注意flash-attn需要单独安装以避免挂起问题:
pip install flash-attn --no-build-isolation
sed -i '/flash-attn/d' requirements.txt
pip install -r requirements.txt --no-build-isolation
安装MagiAttention模块
MagiAttention是项目核心组件,安装时需要足够的内存资源:
git clone https://github.com/SandAI-org/MagiAttention
cd MagiAttention
git submodule update --init --recursive
pip install --no-build-isolation .
cd ../
模型下载与配置
使用huggingface-cli高效下载所需模型:
pip install --upgrade huggingface_hub[hf_transfer]
export HF_HUB_ENABLE_HF_TRANSFER=1
对于4.5B模型:
huggingface-cli download sand-ai/MAGI-1 \
--local-dir ./downloads/t5_pretrained/t5-v1_1-xxl \
--include "ckpt/t5/t5-v1_1-xxl/*" \
--local-dir-use-symlinks False
huggingface-cli download sand-ai/MAGI-1 \
--local-dir ./downloads/vae \
--include "ckpt/vae/*" \
--local-dir-use-symlinks False
huggingface-cli download sand-ai/MAGI-1 \
--local-dir ./downloads/4.5B_base \
--include "ckpt/magi/4.5B_base/*" \
--local-dir-use-symlinks False
整理下载的模型文件:
mv ./downloads/t5_pretrained/t5-v1_1-xxl/ckpt/t5/t5-v1_1-xxl/* ./downloads/t5_pretrained/t5-v1_1-xxl/
mv ./downloads/vae/ckpt/vae/* ./downloads/vae/
mv ./downloads/4.5B_base/ckpt/magi/4.5B_base/* ./downloads/4.5B_base/
常见问题解决
-
CUDA设备设置:4.5B模型的run.sh脚本中需要将CUDA_VISIBLE_DEVICES设置为0而非1
-
24B模型配置:
- distill和fp8字段应设为false
- cfg_number必须设置为3
-
ffmpeg安装:必须同时通过apt-get和pip安装才能正常工作
-
内存问题:安装MagiAttention时至少需要H100级别的内存资源
持久化存储配置
当使用持久化存储时,每次启动需要重新设置环境:
export HF_HOME=/workspace/
export TZ=America/Los_Angeles
source /workspace/venv/bin/activate
apt-get update
apt-get install -y ffmpeg
pip install ffmpeg-python
cd /workspace/MAGI-1
通过以上步骤,可以确保MAGI-1项目在Runpod平台上正确部署和运行。对于不同的模型规模,只需调整相应的下载和配置参数即可。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 开源电子设计自动化利器:KiCad EDA全方位使用指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
296
2.64 K
Ascend Extension for PyTorch
Python
128
149
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
607
190
React Native鸿蒙化仓库
JavaScript
228
307
暂无简介
Dart
588
127
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
611
仓颉编译器源码及 cjdb 调试工具。
C++
122
474
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
178
62
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
454