Skeleton-Recall 的安装和配置教程
2025-05-24 14:35:17作者:羿妍玫Ivan
1. 项目基础介绍
Skeleton-Recall 是一个开源项目,其主要目标是通过一种新颖的损失函数——Skeleton Recall Loss,来增强计算机视觉中细管状结构的连通性保持和资源高效分割。这种损失函数特别适用于血管、神经、道路或裂纹等细管状结构的分割任务。项目主要使用 Python 编程语言实现。
2. 关键技术和框架
本项目基于 nnUNet 框架,并引入了以下关键技术:
- Tubed Skeletonization:一种在数据加载过程中对真实分割掩膜进行骨架化的方法,它通过二值化、骨架提取、管状膨胀和类别分配等步骤来构建骨架。
- Soft Recall Loss:一种软召回损失计算方法,它基于预测结果和预先计算的管状骨架之间的比较来评估连通性保持。
- 损失函数组合:Skeleton Recall Loss 可以与其他通用损失函数(如 Dice Loss、交叉熵损失)结合使用,以提高分割性能。
3. 安装和配置准备工作
在开始安装之前,请确保您的系统中已安装以下依赖项:
- Python(建议使用 Python 3)
- pip(Python 包管理器)
- Git(用于克隆仓库)
详细的安装步骤
以下是将 Skeleton-Recall 项目安装到您本地环境的详细步骤:
-
克隆项目仓库
打开命令行窗口,执行以下命令以克隆项目仓库:
git clone https://github.com/MIC-DKFZ/Skeleton-Recall.git -
安装依赖项
切换到项目目录,安装项目所需的依赖项:
cd Skeleton-Recall pip install -e . -
设置 nnUNet 环境
要使 Skeleton-Recall 在 nnUNet 框架上工作,您需要将一些文件复制到现有的 nnUNet 安装目录中。这包括:
nnUNetTrainerSkeletonRecall类- 数据加载过程中的骨架化过程
- 自定义损失函数
- 损失函数组合
请参考项目文档,将这些文件复制到适当的位置。
-
配置环境变量
nnU-Net 需要知道您打算保存原始数据、预处理数据和训练模型的位置。请按照以下指南设置环境变量:
# 示例设置环境变量,您需要根据实际情况设置这些值 export nnUNet_raw_data_base="/path/to/your/raw/data" export nnUNet_preprocessed_data_base="/path/to/your/preprocessed/data" export nnUNet_trained_models_base="/path/to/your/trained/models" -
训练模型
当一切配置完成后,您可以使用以下命令来训练模型:
-
对于 2D 数据:
nnUNetv2_train DATASET_NAME_OR_ID 2d FOLD -tr nnUNetTrainerSkeletonRecall -
对于 3D 数据:
nnUNetv2_train DATASET_NAME_OR_ID 3d_fullres FOLD -tr nnUNetTrainerSkeletonRecall
请替换
DATASET_NAME_OR_ID和FOLD为您的具体数据集和折数。 -
按照上述步骤操作,您应该能够成功安装和配置 Skeleton-Recall 项目。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.87 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
309
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1