Crawl4AI项目支持本地开源大语言模型进行数据提取的技术解析
2025-05-03 12:59:00作者:邓越浪Henry
在当今数据驱动的时代,高效地从网页中提取结构化数据变得越来越重要。Crawl4AI作为一个开源项目,提供了强大的网页爬取和数据处理能力。本文将深入探讨该项目如何支持使用本地开源大语言模型(LLM)进行数据提取,为开发者提供更灵活、更隐私友好的解决方案。
本地LLM支持的核心机制
Crawl4AI项目通过Litellm库实现了对100多种大语言模型提供商的支持,其中就包括本地运行的Ollama和HuggingFace模型。这种设计使得开发者可以轻松地在项目中集成本地部署的开源模型,而不必依赖云服务提供商。
技术实现上,项目采用了统一的接口设计。当开发者指定使用Ollama模型时,只需按照ollama/模型名称的格式传递参数即可。例如ollama/llama3.2表示使用Ollama本地部署的Llama3.2模型。
实际应用示例
以下是一个典型的使用本地LLM进行数据提取的代码示例:
async def extract_structured_data_using_llm():
print("\n--- 使用本地LLM提取结构化数据 ---")
async with AsyncWebCrawler(verbose=True) as crawler:
result = await crawler.arun(
url="目标网页URL",
word_count_threshold=1,
extraction_strategy=LLMExtractionStrategy(
provider="ollama/llama3.2", # 指定使用本地Ollama模型
api_token='none', # 本地模型无需API token
schema=目标数据结构.schema(),
extraction_type="schema",
instruction="""从爬取内容中提取所有提到的模型名称及其输入输出token费用。
不要遗漏内容中的任何模型。提取的JSON格式示例:
{"model_name": "模型名称", "input_fee": "输入费用", "output_fee": "输出费用"}。""",
),
bypass_cache=True,
)
print(result.extracted_content)
技术优势分析
- 隐私保护:本地模型运行确保敏感数据不会离开用户环境
- 成本效益:避免了云服务API的调用费用,特别适合高频使用场景
- 灵活性:支持多种开源模型,可根据任务需求选择最适合的模型
- 离线能力:不依赖互联网连接,可在隔离环境中使用
最佳实践建议
- 模型选择:根据任务复杂度选择适当规模的模型,平衡性能与资源消耗
- 提示工程:精心设计instruction参数,提高提取准确率
- 性能监控:本地模型可能响应较慢,建议添加适当的超时处理
- 资源管理:确保主机有足够的内存和计算资源运行所选模型
结语
Crawl4AI对本地开源大语言模型的支持为开发者提供了更多元化的选择。这种设计不仅体现了开源精神,也为注重数据隐私和成本控制的用户提供了可行的解决方案。随着开源模型生态的不断发展,这一功能的价值将愈发凸显。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
225
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868