AMD GPU上的Ollama本地大模型部署指南
2025-07-05 07:25:40作者:伍希望
Ollama是一个开源的本地大语言模型运行框架,能够让用户在个人电脑上高效运行各类AI模型。本文将详细介绍如何在配备AMD显卡的Windows系统上部署最新版本的Ollama框架。
项目概述
Ollama项目为AMD GPU用户提供了优化的本地大模型运行环境。通过集成ROCm计算平台,该项目使得AMD显卡也能高效运行各类AI模型,包括但不限于LLaMA、GPT等主流大语言模型。最新发布的v0.6.3版本基于ROCm 6.2.4计算平台构建,相比之前版本在性能和兼容性上都有显著提升。
系统要求与准备工作
在开始安装前,请确认您的系统满足以下要求:
-
硬件要求:
- AMD显卡需支持以下架构之一:gfx906、gfx1010、gfx1011、gfx1012、gfx1030系列、gfx1100系列或gfx1150(实验性支持)
- 建议显存不低于8GB以获得较好体验
-
软件环境:
- Windows 10/11 64位操作系统
- 建议安装最新版AMD显卡驱动
安装步骤详解
方法一:使用安装程序(推荐)
- 下载OllamaSetup.exe安装包
- 运行安装程序,按照向导完成安装
- 安装完成后,进入安装目录(通常位于用户目录下的AppData/Local/Programs/Ollama)
方法二:手动安装(适合高级用户)
- 下载ollama-windows-amd64.7z压缩包
- 解压到目标目录
- 通过命令行进入解压目录
ROCm库配置关键步骤
无论采用哪种安装方式,配置正确的ROCm库都是确保Ollama正常运行的关键:
-
定位ROCm库目录:
- 安装程序方式:查找ollama/lib/ollama/rocm目录
- 手动安装方式:查找解压目录下的对应位置
-
更新ROCm库:
- 删除现有的rocblas/library文件夹
- 下载并替换为对应版本的ROCm库文件
- 确保库文件版本与您的GPU架构匹配
启动与使用
完成上述步骤后,可以通过以下方式启动Ollama:
-
命令行方式:
- 直接运行ollama命令
- 使用ollama run命令加载特定模型
- 通过./ollama serve启动服务
-
图形界面(如有):
- 部分版本可能提供图形界面入口
常见问题排查
若遇到"amdgpu is not supported"等错误提示,请检查:
- ROCm库是否正确替换
- GPU架构是否在支持列表中
- 安装步骤是否完整执行
性能优化建议
- 根据模型大小调整批处理参数
- 监控显存使用情况,适当调整模型参数
- 保持驱动和框架版本更新
结语
通过本文介绍的步骤,AMD GPU用户现在可以充分利用硬件性能在本地运行各类大语言模型。随着ROCm生态的不断完善,AMD平台的大模型计算能力将持续提升,为用户带来更流畅的AI体验。建议定期关注项目更新,以获取最新功能和性能优化。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
651
149
Ascend Extension for PyTorch
Python
211
222
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
251
319