Lorax项目新增EETQ量化格式支持的技术解析
2025-06-27 19:47:20作者:凌朦慧Richard
在深度学习模型部署领域,量化技术一直是优化推理性能的重要手段。近期,Lorax项目团队宣布在其推理服务中新增了对EETQ量化格式的支持,这一进展值得技术社区关注。
EETQ量化技术概述
EETQ是一种8位量化格式,设计目标是成为Bitsandbytes的直接替代方案,同时提供更优的性能表现。与传统的量化方法相比,EETQ在保持模型精度的同时,能够显著提升推理速度,这对于生产环境中的大规模模型部署尤为重要。
Lorax集成EETQ的技术挑战
Lorax团队在集成EETQ过程中遇到了几个关键技术挑战:
-
构建系统问题:初期尝试时出现了CUTLASS子模块缺失导致的编译失败,具体表现为无法找到cutlass/numeric_types.h头文件。这个问题源于EETQ对NVIDIA CUTLASS库的依赖。
-
兼容性验证:需要确保EETQ量化模型能够与Lorax现有的推理管道无缝集成,包括批处理、动态批处理和序列生成等功能。
解决方案与实现
团队采取了分阶段实施的策略:
-
基础架构准备:首先完成了对HQQ和Marlin等其他量化格式的支持,为EETQ集成打下基础。
-
依赖管理:解决了CUTLASS子模块的构建问题,确保编译环境配置正确。
-
性能测试:在多种硬件配置上验证EETQ量化模型的推理性能和精度保持情况。
使用指南
用户现在可以通过Docker使用EETQ量化功能:
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/predibase/lorax:latest --model-id $model --quantize eetq
未来展望
虽然EETQ支持已经实现,但团队表示将继续优化其性能表现。对于开发者而言,EETQ的加入提供了又一个模型优化的选择,特别是在对延迟敏感的应用场景中。
这一技术进展体现了Lorax项目对前沿模型优化技术的快速响应能力,也为社区用户提供了更丰富的部署选项。随着量化技术的不断发展,我们可以期待看到更多高效的量化格式被集成到主流推理框架中。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C036
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
428
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
345
Ascend Extension for PyTorch
Python
236
270
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
71
36
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669