苹果ML-4M项目中边界框与文本共享词片分词器的技术解析
2025-07-09 04:52:15作者:戚魁泉Nursing
在计算机视觉与自然语言处理的多模态任务中,苹果开源的ML-4M项目采用了一种创新的分词器设计方法。该项目没有为边界框(bounding box)单独训练专用分词器,而是巧妙地复用文本WordPiece分词器来处理视觉定位信息。
共享分词器的设计原理
传统方法通常会为不同模态的数据分别设计处理流程,但ML-4M项目打破了这一常规思路。其核心创新在于将边界框的坐标信息(xmin, ymin, xmax, ymax)和物体类别都纳入到文本分词器的词汇表中。这种设计使得模型能够用统一的处理流程同时理解文本描述和视觉定位信息。
实现细节剖析
项目中的分词器实现包含两个关键部分:
-
分词器训练阶段:在构建词汇表时,除了常规的文本词汇外,还特意加入了表示坐标位置的特殊token和物体类别标识符。这使得同一个分词器既能处理自然语言文本,又能编码视觉定位信息。
-
分词器应用阶段:在处理输入数据时,无论是文本描述还是边界框坐标,都通过同一套分词机制转换为token序列。这种统一表示简化了模型架构,有利于不同模态信息在神经网络中的融合处理。
技术优势分析
这种共享分词器的设计带来了多重优势:
- 参数效率:避免了为不同模态维护多个分词器,减少了模型参数量
- 表示一致性:文本和视觉信息在嵌入空间中使用相同的表示方式
- 训练简化:单一处理流程降低了模型训练复杂度
- 模态交互:促进文本与视觉信息在早期处理阶段的交互
实际应用启示
这种创新设计为多模态学习提供了新思路,特别是在需要同时处理文本和视觉定位信息的任务中,如:
- 图像描述生成
- 视觉问答系统
- 跨模态检索
- 文档布局分析
通过复用文本分词器处理视觉信息,ML-4M项目展示了深度学习模型中表示统一化的重要价值,为后续多模态研究提供了有益参考。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210