Fruit框架中动态装饰器模式的实现方法
2025-07-08 23:11:08作者:田桥桑Industrious
概述
在依赖注入框架Fruit中实现动态装饰器模式是一个常见的需求场景。本文将通过一个实际案例,详细介绍如何在Fruit框架中根据运行时条件动态选择基础实现类并决定是否添加装饰器层。
问题背景
假设我们有一个名称翻译器的抽象基类NameTranslator,以及它的几个具体实现:
NewStyleTranslator- 新式翻译器实现LegacyTranslator- 旧式翻译器实现NormalizingTranslator- 规范化装饰器,包装其他NameTranslator实现
业务需求是根据两个运行时布尔值参数动态决定:
- 使用新式还是旧式翻译器(
is_new_style) - 是否需要添加规范化装饰层(
should_normalize)
初始实现尝试
基于注解的绑定方案
开发者首先尝试使用Fruit的注解功能来实现动态绑定:
fruit::Component<fruit::Required<NewStyleTranslator, LegacyTranslator>,
fruit::Annotated<InnerTag, NameTranslator>>
get_inner_component(bool is_new_style) {
if (is_new_style) {
return fruit::createComponent()
.bind<fruit::Annotated<InnerTag, NameTranslator>, NewStyleTranslator>();
} else {
return fruit::createComponent()
.bind<fruit::Annotated<InnerTag, NameTranslator>, LegacyTranslator>();
}
}
然后在外部组件中尝试将普通NameTranslator绑定到注解版本:
fruit::Component<fruit::Required<fruit::Annotated<InnerTag, NameTranslator>>,
NameTranslator>
get_outer_component() {
return fruit::createComponent()
.bind<NameTranslator, fruit::Annotated<InnerTag, NameTranslator>>();
}
这种方案遇到了编译错误,因为Fruit框架会阻止将接口绑定到自身,即使使用了不同的注解。
基于Provider的方案
第二种尝试是使用registerProvider:
registerProvider([](
Provider<NewStyleTranslator> new_style,
Provider<LegacyTranslator> legacy,
OtherParameters other_params) {
NameTranslator* inner = is_new_style ? new_style.get() : legacy.get();
return should_normalize ? new NormalizingTranslator(*inner, other_params) : inner;
});
这种方案会导致双重释放问题,因为当should_normalize为false时,返回的是已由其他部分管理的指针,而Fruit框架会尝试再次释放它。
解决方案
Fruit框架维护者确认了第一种基于注解的方案是正确的方向,但框架原本的实现过于严格地阻止了接口到自身的绑定。在最新版本中,框架已做出以下改进:
- 只有当绑定完全相同的类型和注解时才会报错
- 允许将普通接口绑定到带注解的相同接口
- 更新了相关文档说明
这意味着现在可以安全地使用注解方案来实现动态装饰器模式。
最佳实践
在Fruit中实现动态装饰器模式的推荐做法是:
- 使用注解标记内部实现
- 根据条件绑定不同的具体实现到注解接口
- 在外部组件中决定是否添加装饰层
- 确保装饰器类也继承自基接口
这种模式不仅适用于名称翻译器场景,也可以推广到其他需要动态装饰的业务场景中。
总结
Fruit框架通过灵活的注解系统和改进后的绑定规则,为开发者提供了实现动态装饰器模式的优雅方案。理解框架的绑定机制和生命周期管理是成功应用这种模式的关键。随着框架的不断完善,这类常见设计模式的实现会变得更加直观和简便。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
281
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
React Native鸿蒙化仓库
JavaScript
248
317
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
214
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100