在subs-check项目中实现IP欺诈分数过滤的技术探讨
2025-07-09 08:16:25作者:羿妍玫Ivan
在节点订阅管理工具subs-check的使用过程中,用户提出了一个关于IP欺诈分数过滤的需求。本文将深入探讨这一功能的技术实现方案及其背后的原理。
IP欺诈分数过滤的需求背景
IP欺诈分数是评估IP地址可信度的重要指标,通常由专业的IP信誉服务提供。分数越高,表示该IP存在欺诈行为的可能性越大。在实际应用中,过滤高欺诈分数的节点能够有效提升网络连接的安全性和可靠性。
subs-check的现有能力分析
subs-check作为一款节点订阅管理工具,其主要功能集中在节点信息的收集、处理和输出上。虽然它本身不直接提供IP欺诈分数过滤功能,但通过与其他工具的组合使用,仍然可以实现这一需求。
技术实现方案
方案一:结合sub-store实现
sub-store是一个功能强大的订阅处理工具,可以通过正则表达式对节点进行过滤。具体实现步骤如下:
- 在sub-store中创建一个新的处理流程
- 添加正则表达式过滤规则:
^(?!.*[1-9][0-9]*%).*$ - 使用处理后的订阅链接时,添加
#noCache参数避免缓存
这种方案的优点在于:
- 不修改原有订阅处理流程
- 规则不会因节点刷新而丢失
- 实现简单,维护成本低
方案二:开发原生支持功能
虽然当前subs-check没有计划原生支持IP欺诈分数过滤,但从技术角度考虑,可能的实现方式包括:
- 集成第三方IP信誉API服务
- 在节点检测阶段获取并记录IP欺诈分数
- 根据配置的阈值过滤节点
这种方案需要考虑的因素包括:
- API调用频率限制
- 性能影响
- 数据隐私合规性
最佳实践建议
对于大多数用户,推荐采用方案一,即通过sub-store实现过滤。这种方案具有以下优势:
- 无需等待功能开发
- 配置灵活可调
- 不影响subs-check的核心功能
同时,使用时应注意:
- 确保正则表达式准确匹配IP欺诈分数格式
- 定期检查过滤效果
- 保留原始订阅作为备份
总结
虽然subs-check目前不直接支持IP欺诈分数过滤,但通过合理的工具组合和配置,用户仍然可以实现这一需求。这体现了现代工具生态系统的灵活性,也提醒我们在选择技术方案时要考虑扩展性和组合使用的可能性。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134