Odigos v1.0.168 版本发布:增强云原生可观测性能力
Odigos 是一个开源的分布式追踪和可观测性平台,专注于为云原生应用提供自动化的遥测数据收集和传输能力。它通过轻量级的 sidecar 方式自动检测应用程序,无需修改代码即可收集指标、日志和追踪数据,并将这些数据发送到各种可观测性后端。
本次发布的 v1.0.168 版本带来了多项重要更新,主要集中在新增多种数据目的地支持、改进环境变量配置以及优化发布流程等方面。这些改进使 Odigos 能够更好地满足企业在多云环境下的可观测性需求。
新增数据目的地支持
Odigos 1.0.168 版本显著扩展了其支持的监控后端系统,新增了以下重要数据目的地:
-
AWS EMF 目的地:新增了对 Amazon CloudWatch 嵌入式指标格式(EMF)的支持,使用户能够直接将指标数据发送到 AWS CloudWatch 服务,这对于运行在 AWS 环境中的应用程序特别有价值。
-
时序数据库支持:新增了对 GreptimeDB 和 VictoriaMetrics 的支持,这两款都是高性能的时序数据库,特别适合存储和分析时间序列数据。
-
云服务提供商监控:新增了对阿里云(Alibaba Cloud)和甲骨文云(Oracle Cloud)监控服务的原生支持,扩展了 Odigos 在多云环境下的适用性。
-
APM 工具集成:新增了对 Observe、Seq、Tingyun 和 Bonree ONE 等应用性能监控(APM)工具的支持,为用户提供了更多选择。
-
运维工具集成:新增了对 OneUptime 的支持,这是一款开源的运维状态监控和事件管理工具。
这些新增的目的地支持使 Odigos 能够更好地适应不同企业的技术栈和监控需求,特别是在混合云和多云环境中。
环境变量配置改进
本次版本在环境变量配置方面进行了重要优化:
-
环境变量值来源配置:新增了支持从环境变量值来源(valueFrom)的配置方式,这使得配置更加灵活,可以更好地与 Kubernetes 的原生功能集成。
-
Java 代理优化:改进了 Java 代理的环境变量设置逻辑,现在当多个选项被定义时,只会设置一个环境变量,避免了潜在的冲突问题。这一改进特别有助于复杂 Java 应用的监控配置。
发布流程优化
开发团队对发布流程进行了多项改进:
-
发布检查机制:新增了对开放偏移量(open offsets)拉取请求的发布检查,确保发布质量。
-
发布工具统一:整合了发布 CLI 工具,移除了已弃用的 --rm-dist 参数,改用 --clean 参数,使发布流程更加标准化。
-
文档构建更新:更新了文档构建工具 mintlify 的版本,确保文档生成的质量和稳定性。
前端改进
前端部分也进行了多项更新:
-
React 升级:将前端使用的 React 框架从 19.0.0 升级到 19.1.0 版本,带来了性能改进和新特性支持。
-
依赖更新:更新了多个前端依赖项,包括 gqlgen 和 gin-contrib/cors 等,提升了安全性和功能性。
问题修复
本次发布还包含多个问题修复:
-
文档崩溃问题:修复了文档系统可能崩溃的问题,提升了用户体验。
-
节点收集器描述命令:修复了节点收集器(node collector)描述命令的问题,使诊断更加准确。
-
Python 代理更新:将 Python 代理更新到 v1.0.34 版本,包含了多项改进和修复。
总结
Odigos v1.0.168 版本通过新增多种数据目的地支持,显著扩展了其在多云环境下的适用性。环境变量配置的改进使部署更加灵活,而发布流程的优化则提升了开发效率。这些更新共同增强了 Odigos 作为云原生可观测性平台的能力,使其能够更好地满足企业级监控需求。
对于已经在使用 Odigos 的用户,建议评估新增的数据目的地是否能够满足您的监控需求。对于新用户,这个版本提供了更丰富的集成选项,是开始使用 Odigos 的好时机。特别是运行在混合云环境中的企业,新增的云服务提供商支持将大大简化监控系统的搭建和维护工作。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00