Odigos v1.0.168 版本发布:增强云原生可观测性能力
Odigos 是一个开源的分布式追踪和可观测性平台,专注于为云原生应用提供自动化的遥测数据收集和传输能力。它通过轻量级的 sidecar 方式自动检测应用程序,无需修改代码即可收集指标、日志和追踪数据,并将这些数据发送到各种可观测性后端。
本次发布的 v1.0.168 版本带来了多项重要更新,主要集中在新增多种数据目的地支持、改进环境变量配置以及优化发布流程等方面。这些改进使 Odigos 能够更好地满足企业在多云环境下的可观测性需求。
新增数据目的地支持
Odigos 1.0.168 版本显著扩展了其支持的监控后端系统,新增了以下重要数据目的地:
-
AWS EMF 目的地:新增了对 Amazon CloudWatch 嵌入式指标格式(EMF)的支持,使用户能够直接将指标数据发送到 AWS CloudWatch 服务,这对于运行在 AWS 环境中的应用程序特别有价值。
-
时序数据库支持:新增了对 GreptimeDB 和 VictoriaMetrics 的支持,这两款都是高性能的时序数据库,特别适合存储和分析时间序列数据。
-
云服务提供商监控:新增了对阿里云(Alibaba Cloud)和甲骨文云(Oracle Cloud)监控服务的原生支持,扩展了 Odigos 在多云环境下的适用性。
-
APM 工具集成:新增了对 Observe、Seq、Tingyun 和 Bonree ONE 等应用性能监控(APM)工具的支持,为用户提供了更多选择。
-
运维工具集成:新增了对 OneUptime 的支持,这是一款开源的运维状态监控和事件管理工具。
这些新增的目的地支持使 Odigos 能够更好地适应不同企业的技术栈和监控需求,特别是在混合云和多云环境中。
环境变量配置改进
本次版本在环境变量配置方面进行了重要优化:
-
环境变量值来源配置:新增了支持从环境变量值来源(valueFrom)的配置方式,这使得配置更加灵活,可以更好地与 Kubernetes 的原生功能集成。
-
Java 代理优化:改进了 Java 代理的环境变量设置逻辑,现在当多个选项被定义时,只会设置一个环境变量,避免了潜在的冲突问题。这一改进特别有助于复杂 Java 应用的监控配置。
发布流程优化
开发团队对发布流程进行了多项改进:
-
发布检查机制:新增了对开放偏移量(open offsets)拉取请求的发布检查,确保发布质量。
-
发布工具统一:整合了发布 CLI 工具,移除了已弃用的 --rm-dist 参数,改用 --clean 参数,使发布流程更加标准化。
-
文档构建更新:更新了文档构建工具 mintlify 的版本,确保文档生成的质量和稳定性。
前端改进
前端部分也进行了多项更新:
-
React 升级:将前端使用的 React 框架从 19.0.0 升级到 19.1.0 版本,带来了性能改进和新特性支持。
-
依赖更新:更新了多个前端依赖项,包括 gqlgen 和 gin-contrib/cors 等,提升了安全性和功能性。
问题修复
本次发布还包含多个问题修复:
-
文档崩溃问题:修复了文档系统可能崩溃的问题,提升了用户体验。
-
节点收集器描述命令:修复了节点收集器(node collector)描述命令的问题,使诊断更加准确。
-
Python 代理更新:将 Python 代理更新到 v1.0.34 版本,包含了多项改进和修复。
总结
Odigos v1.0.168 版本通过新增多种数据目的地支持,显著扩展了其在多云环境下的适用性。环境变量配置的改进使部署更加灵活,而发布流程的优化则提升了开发效率。这些更新共同增强了 Odigos 作为云原生可观测性平台的能力,使其能够更好地满足企业级监控需求。
对于已经在使用 Odigos 的用户,建议评估新增的数据目的地是否能够满足您的监控需求。对于新用户,这个版本提供了更丰富的集成选项,是开始使用 Odigos 的好时机。特别是运行在混合云环境中的企业,新增的云服务提供商支持将大大简化监控系统的搭建和维护工作。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









