Ragas项目中Faithfulness指标使用问题解析
2025-05-26 17:04:51作者:胡易黎Nicole
问题背景
在Ragas项目最新版本0.2.7中,用户发现官方文档中关于Faithfulness评估指标的示例代码无法正常运行。这是一个典型的API变更导致文档滞后的案例,值得开发者注意。
问题分析
原始示例代码尝试从ragas.database_schema导入SingleTurnSample类,但实际在0.2.7版本中,这个类已经被移动到了ragas.dataset_schema模块。这种模块重构在软件开发过程中很常见,但需要及时更新相关文档。
解决方案
正确的使用方式需要做以下调整:
- 导入路径修正:
from ragas.dataset_schema import SingleTurnSample - 添加必要的LLM配置:需要配置评估使用的语言模型
- 确保环境变量设置正确
完整示例代码
import os
from dotenv import load_dotenv
# 加载环境变量
load_dotenv()
from ragas.dataset_schema import SingleTurnSample
from ragas.metrics import Faithfulness
# 创建评估样本
sample = SingleTurnSample(
user_input="第一届超级碗是什么时候举办的?",
response="第一届超级碗于1967年1月15日举行",
retrieved_contexts=[
"第一届AFL-NFL世界冠军赛于1967年1月15日在洛杉矶纪念体育馆举行。"
],
)
# 配置评估模型
llm = ChatOpenAI(model="gpt-4o-mini")
evaluator_llm = LangchainLLMWrapper(llm)
scorer = Faithfulness(llm=evaluator_llm)
# 执行评估
await scorer.single_turn_ascore(sample)
技术要点
- 评估流程:Faithfulness指标用于评估生成回答与检索上下文之间的一致性
- 模型配置:必须指定评估使用的语言模型,这是保证评估质量的关键
- 异步评估:使用await关键字表明这是一个异步操作
最佳实践建议
- 定期检查文档与代码版本的兼容性
- 在升级版本时注意API变更日志
- 对于评估类项目,保持评估模型的稳定性很重要
总结
这个问题展示了开源项目中常见的文档与代码同步挑战。开发者在使用Ragas这类评估框架时,应该注意版本兼容性问题,并理解评估流程中各组件的作用。正确的Faithfulness评估需要合理配置评估模型,并确保数据结构符合最新API要求。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
295
2.63 K
暂无简介
Dart
585
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
187
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
359
2.3 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
760
72
Ascend Extension for PyTorch
Python
124
147
仓颉编译器源码及 cjdb 调试工具。
C++
122
430
仓颉编程语言运行时与标准库。
Cangjie
130
444