【亲测免费】 EmpatheticDialogues 开源项目教程
2026-01-23 05:25:18作者:龚格成
1. 项目介绍
EmpatheticDialogues 是一个由 Facebook Research 开发的开源项目,旨在创建一个能够生成共情响应的对话模型。该项目基于 EmpatheticDialogues 数据集进行训练,该数据集包含 25,000 个基于情感情境的对话。通过使用该数据集,模型能够学习如何在对话中产生共情的响应。
项目的主要特点包括:
- 数据集:包含 25,000 个情感对话,每个对话都基于特定的情感情境。
- 模型:支持 Transformer 和 BERT 两种模型架构,用于预训练和微调。
- 评估指标:支持 P@1,100 和 BLEU 等自动化评估指标。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了以下依赖:
- Python 3.x
- PyTorch 1.0.1
- numpy 1.14.3
- tqdm 4.19.7
- fairseq 0.6.2 (可选,用于 BLEU 计算)
- fastText 0.9.1 (可选,用于 Prepend 模型)
- pandas 0.22.0 (可选,用于 DailyDialog 数据集)
- ParlAI (用于 BERT 模型)
- pytorch-pretrained-BERT 0.5.1 (用于 BERT 模型)
2.2 下载数据集
wget https://dl.fbaipublicfiles.com/parlai/empatheticdialogues/empatheticdialogues.tar.gz
tar -xzf empatheticdialogues.tar.gz
2.3 下载预训练模型
wget https://dl.fbaipublicfiles.com/parlai/empatheticdialogues/models/normal_transformer_pretrained.mdl
wget https://dl.fbaipublicfiles.com/parlai/empatheticdialogues/models/bert_pretrained.mdl
2.4 运行评估
使用预训练模型进行评估:
python retrieval_eval_bleu.py \
--empchat-cands \
--empchat-folder ./empatheticdialogues \
--max-hist-len 4 \
--model ./models/normal_transformer_pretrained.mdl \
--name model \
--output-folder ./eval_results \
--reactonly \
--task empchat
3. 应用案例和最佳实践
3.1 情感支持聊天机器人
EmpatheticDialogues 项目可以用于构建情感支持聊天机器人。通过训练模型在特定情感情境下生成共情响应,可以为用户提供情感支持。例如,当用户表达悲伤时,聊天机器人可以生成安慰性的响应。
3.2 情感分析与对话生成
该项目还可以用于情感分析和对话生成研究。通过分析对话中的情感变化,研究人员可以更好地理解情感在对话中的作用,并开发更智能的对话系统。
4. 典型生态项目
4.1 ParlAI
ParlAI 是一个用于对话模型研究的框架,支持多种对话数据集和模型。EmpatheticDialogues 项目与 ParlAI 紧密结合,可以利用 ParlAI 提供的工具和接口进行模型训练和评估。
4.2 BERT
BERT 是一种基于 Transformer 的预训练语言模型,广泛用于自然语言处理任务。EmpatheticDialogues 项目支持使用 BERT 进行预训练和微调,以生成更高质量的共情响应。
4.3 fastText
fastText 是一个用于文本分类和词向量表示的库。在 EmpatheticDialogues 项目中,fastText 用于情感分类,帮助模型更好地理解对话中的情感内容。
通过结合这些生态项目,EmpatheticDialogues 可以进一步提升其对话模型的性能和应用范围。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136