VLMEvalKit项目中InternVL2-Llama3-76B模型多卡部署问题解析
在开源项目VLMEvalKit中使用InternVL2-Llama3-76B这类大模型时,开发者可能会遇到多GPU设备间的张量分配问题。本文将深入分析该问题的成因并提供解决方案。
问题现象
当尝试在VLMEvalKit中运行InternVL2-Llama3-76B模型时,即使设置了device_map='auto'参数,系统仍会报出"Expected all tensors to be on the same device"错误。这表明模型的不同部分被错误地分配到了不同的GPU设备上(如cuda:0和cuda:1),导致张量运算无法正常进行。
问题根源
-
模型规模因素:76B参数的大模型通常需要跨多张GPU进行分布式部署,简单的auto分配策略可能无法正确处理模型各组件间的依赖关系。
-
组件特殊性:InternVL这类视觉-语言混合模型包含视觉编码器和语言模型两部分,它们对计算资源的需求不同,需要特别处理。
-
设备映射不足:标准的auto设备映射策略可能无法识别模型中的关键组件,导致重要模块被分散到不同设备。
解决方案
方案一:使用原始配置
最简单的解决方案是直接使用项目提供的原始运行命令:
python run.py --model InternVL2-76B --data RealWorldQA
这种方式已经内置了合理的设备分配策略。
方案二:手动设备映射
对于需要自定义部署的情况,可以使用accelerate库进行精细化的设备映射:
from accelerate import infer_auto_device_map
# 初始化模型时不指定device_map
model = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
low_cpu_mem_usage=True).eval()
# 获取模型的不可分割模块
no_split_module = model._no_split_modules
# 自定义设备映射
device_map = infer_auto_device_map(
model,
max_memory={0: '40GiB', 1: '40GiB', 2: '40GiB', 3: '40GiB'},
no_split_module_classes=no_split_module)
# 关键组件强制分配到指定设备
device_map['vision_model'] = 0
device_map['mlp1'] = 0
device_map['language_model.model.tok_embeddings'] = 0
device_map['language_model.model.embed_tokens'] = 0
device_map['language_model.output'] = 0
device_map['language_model.model.norm'] = 0
device_map['language_model.lm_head'] = 0
技术要点
-
内存分配策略:为每个GPU设置40GiB的内存上限,确保资源合理分配。
-
关键组件固定:将视觉模型、嵌入层和输出层等关键组件固定到同一设备(如cuda:0),避免跨设备通信。
-
不可分割模块:通过_no_split_modules属性识别模型中不应被分割的组件,保证模型结构的完整性。
最佳实践建议
-
对于大多数用户,直接使用项目提供的运行命令是最稳妥的选择。
-
需要自定义部署时,建议先完整加载模型再构建设备映射,这样可以更准确地评估各组件资源需求。
-
在实际部署前,建议先在小规模数据上测试设备映射方案的有效性。
-
根据实际GPU配置调整max_memory参数,避免内存不足或资源浪费。
通过以上方法,开发者可以有效地解决VLMEvalKit中大模型的多GPU部署问题,确保模型能够高效稳定地运行。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00