VLMEvalKit项目中InternVL2-Llama3-76B模型多卡部署问题解析
在开源项目VLMEvalKit中使用InternVL2-Llama3-76B这类大模型时,开发者可能会遇到多GPU设备间的张量分配问题。本文将深入分析该问题的成因并提供解决方案。
问题现象
当尝试在VLMEvalKit中运行InternVL2-Llama3-76B模型时,即使设置了device_map='auto'参数,系统仍会报出"Expected all tensors to be on the same device"错误。这表明模型的不同部分被错误地分配到了不同的GPU设备上(如cuda:0和cuda:1),导致张量运算无法正常进行。
问题根源
-
模型规模因素:76B参数的大模型通常需要跨多张GPU进行分布式部署,简单的auto分配策略可能无法正确处理模型各组件间的依赖关系。
-
组件特殊性:InternVL这类视觉-语言混合模型包含视觉编码器和语言模型两部分,它们对计算资源的需求不同,需要特别处理。
-
设备映射不足:标准的auto设备映射策略可能无法识别模型中的关键组件,导致重要模块被分散到不同设备。
解决方案
方案一:使用原始配置
最简单的解决方案是直接使用项目提供的原始运行命令:
python run.py --model InternVL2-76B --data RealWorldQA
这种方式已经内置了合理的设备分配策略。
方案二:手动设备映射
对于需要自定义部署的情况,可以使用accelerate库进行精细化的设备映射:
from accelerate import infer_auto_device_map
# 初始化模型时不指定device_map
model = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
low_cpu_mem_usage=True).eval()
# 获取模型的不可分割模块
no_split_module = model._no_split_modules
# 自定义设备映射
device_map = infer_auto_device_map(
model,
max_memory={0: '40GiB', 1: '40GiB', 2: '40GiB', 3: '40GiB'},
no_split_module_classes=no_split_module)
# 关键组件强制分配到指定设备
device_map['vision_model'] = 0
device_map['mlp1'] = 0
device_map['language_model.model.tok_embeddings'] = 0
device_map['language_model.model.embed_tokens'] = 0
device_map['language_model.output'] = 0
device_map['language_model.model.norm'] = 0
device_map['language_model.lm_head'] = 0
技术要点
-
内存分配策略:为每个GPU设置40GiB的内存上限,确保资源合理分配。
-
关键组件固定:将视觉模型、嵌入层和输出层等关键组件固定到同一设备(如cuda:0),避免跨设备通信。
-
不可分割模块:通过_no_split_modules属性识别模型中不应被分割的组件,保证模型结构的完整性。
最佳实践建议
-
对于大多数用户,直接使用项目提供的运行命令是最稳妥的选择。
-
需要自定义部署时,建议先完整加载模型再构建设备映射,这样可以更准确地评估各组件资源需求。
-
在实际部署前,建议先在小规模数据上测试设备映射方案的有效性。
-
根据实际GPU配置调整max_memory参数,避免内存不足或资源浪费。
通过以上方法,开发者可以有效地解决VLMEvalKit中大模型的多GPU部署问题,确保模型能够高效稳定地运行。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









