DeepLabCut在Apple Silicon Mac上的环境配置指南
2025-06-10 18:21:31作者:钟日瑜
背景介绍
DeepLabCut作为一款流行的动物行为分析工具,在Apple Silicon芯片(M1/M2/M3/M4系列)的Mac设备上安装时可能会遇到依赖项兼容性问题。本文将详细介绍如何正确配置适用于Apple Silicon架构的DeepLabCut运行环境。
环境配置方案
针对Apple Silicon Mac用户,我们推荐使用以下conda环境配置文件(YAML格式):
name: deeplabcut
channels:
- conda-forge
- defaults
dependencies:
- python=3.10
- pip
- ipython
- jupyter
- python.app
- ffmpeg
- pytables
- pandas
- pip:
- tensorflow-macos==2.12.0
- tensorflow-metal
- deeplabcut[apple-mchips,gui]==2.3.9
关键配置说明
-
Python版本选择:使用Python 3.10版本,这是目前与TensorFlow和DeepLabCut兼容性较好的版本。
-
TensorFlow适配:
- 使用
tensorflow-macos2.12.0版本,这是Apple官方提供的TensorFlow版本 - 配合
tensorflow-metal实现GPU加速
- 使用
-
DeepLabCut安装:
- 明确指定
deeplabcut[apple-mchips,gui]安装方式 - 固定版本为2.3.9确保稳定性
- 明确指定
常见问题解决
-
安装失败:确保使用conda-forge作为优先channel,这是许多科学计算包的最新版本来源。
-
GPU加速问题:安装完成后,可以通过以下代码验证Metal加速是否正常工作:
import tensorflow as tf tf.config.list_physical_devices('GPU') -
依赖冲突:如果遇到依赖冲突,建议先创建一个干净的conda环境再进行安装。
未来展望
DeepLabCut团队正在将后端从TensorFlow迁移到PyTorch,这将从根本上解决Apple Silicon设备的兼容性问题。届时安装过程将更加简单,性能也会有所提升。
最佳实践建议
-
建议使用conda而非pip直接安装,可以更好地管理依赖关系。
-
安装前先更新conda:
conda update conda -
创建环境时使用:
conda env create -f deeplabcut_apple_silicon.yaml
通过以上配置,用户可以在Apple Silicon芯片的Mac设备上顺利运行DeepLabCut进行动物行为分析研究。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
416
3.2 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
682
160
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
664
React Native鸿蒙化仓库
JavaScript
265
326
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
Ascend Extension for PyTorch
Python
230
259