Odigos v1.0.171版本发布:增强采样与OpenShift支持
Odigos是一个开源的分布式追踪系统,它通过自动检测应用程序中的关键路径并生成追踪数据,帮助开发者更好地理解和优化系统性能。最新发布的v1.0.171版本带来了一系列重要改进,特别是在采样处理和OpenShift集群支持方面。
采样处理器的重大增强
新版本为采样处理器添加了多种新的采样器实现,这将显著提升系统在处理大量追踪数据时的灵活性。采样是分布式追踪系统中的关键环节,它决定了哪些请求会被记录和分析。过多的采样会消耗大量存储资源,而过少的采样则可能导致重要信息丢失。
v1.0.171版本引入的新采样器包括:
- 基于概率的采样器:按固定比例采样请求
- 基于速率的采样器:控制单位时间内的采样数量
- 动态采样器:根据系统负载自动调整采样率
这些新特性使得开发团队能够更精确地控制采样策略,在保证关键业务数据完整性的同时,有效降低存储和分析成本。
OpenShift集群的自动检测支持
对于使用Red Hat OpenShift的企业用户,v1.0.171版本新增了自动检测OpenShift集群的功能。这意味着Odigos现在能够:
- 自动识别运行环境是否为OpenShift
- 根据OpenShift特性优化资源分配和权限配置
- 无缝集成OpenShift的原生监控和安全机制
这一改进大大简化了在OpenShift上部署和管理Odigos的复杂度,使企业用户能够更快速地获得分布式追踪带来的价值。
其他重要改进
除了上述主要特性外,v1.0.171版本还包含以下值得关注的改进:
-
URL模板处理器:新增的URL模板处理器允许用户动态构建追踪数据的存储和查询URL,提高了系统配置的灵活性。
-
UI事件流优化:改进了用户界面中的服务器发送事件(SSE)处理逻辑,确保修改事件能够被正确识别和处理,提升了用户体验。
-
Python OpenTelemetry客户端更新:同步了最新的Python OpenTelemetry SDK版本,修复了已知问题并提升了性能。
-
文档依赖更新:更新了文档系统的多个依赖项,提高了文档构建的稳定性和安全性。
版本兼容性与升级建议
v1.0.171版本保持了与之前版本的API兼容性,用户可以直接升级而无需修改现有配置。对于生产环境,建议先在测试环境中验证新版本的采样策略和OpenShift支持功能,确保它们符合您的具体需求。
Odigos团队持续关注用户反馈,不断优化系统的性能和易用性。v1.0.171版本的发布再次证明了项目对满足企业级需求的承诺,特别是在复杂Kubernetes环境中的支持方面。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00