Odigos v1.0.171版本发布:增强采样与OpenShift支持
Odigos是一个开源的分布式追踪系统,它通过自动检测应用程序中的关键路径并生成追踪数据,帮助开发者更好地理解和优化系统性能。最新发布的v1.0.171版本带来了一系列重要改进,特别是在采样处理和OpenShift集群支持方面。
采样处理器的重大增强
新版本为采样处理器添加了多种新的采样器实现,这将显著提升系统在处理大量追踪数据时的灵活性。采样是分布式追踪系统中的关键环节,它决定了哪些请求会被记录和分析。过多的采样会消耗大量存储资源,而过少的采样则可能导致重要信息丢失。
v1.0.171版本引入的新采样器包括:
- 基于概率的采样器:按固定比例采样请求
- 基于速率的采样器:控制单位时间内的采样数量
- 动态采样器:根据系统负载自动调整采样率
这些新特性使得开发团队能够更精确地控制采样策略,在保证关键业务数据完整性的同时,有效降低存储和分析成本。
OpenShift集群的自动检测支持
对于使用Red Hat OpenShift的企业用户,v1.0.171版本新增了自动检测OpenShift集群的功能。这意味着Odigos现在能够:
- 自动识别运行环境是否为OpenShift
- 根据OpenShift特性优化资源分配和权限配置
- 无缝集成OpenShift的原生监控和安全机制
这一改进大大简化了在OpenShift上部署和管理Odigos的复杂度,使企业用户能够更快速地获得分布式追踪带来的价值。
其他重要改进
除了上述主要特性外,v1.0.171版本还包含以下值得关注的改进:
-
URL模板处理器:新增的URL模板处理器允许用户动态构建追踪数据的存储和查询URL,提高了系统配置的灵活性。
-
UI事件流优化:改进了用户界面中的服务器发送事件(SSE)处理逻辑,确保修改事件能够被正确识别和处理,提升了用户体验。
-
Python OpenTelemetry客户端更新:同步了最新的Python OpenTelemetry SDK版本,修复了已知问题并提升了性能。
-
文档依赖更新:更新了文档系统的多个依赖项,提高了文档构建的稳定性和安全性。
版本兼容性与升级建议
v1.0.171版本保持了与之前版本的API兼容性,用户可以直接升级而无需修改现有配置。对于生产环境,建议先在测试环境中验证新版本的采样策略和OpenShift支持功能,确保它们符合您的具体需求。
Odigos团队持续关注用户反馈,不断优化系统的性能和易用性。v1.0.171版本的发布再次证明了项目对满足企业级需求的承诺,特别是在复杂Kubernetes环境中的支持方面。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00