HuggingFace Datasets 3.3.0版本发布:异步处理与性能优化
2025-06-02 17:34:56作者:邵娇湘
HuggingFace Datasets是机器学习领域广泛使用的数据加载和处理库,它提供了简单高效的接口来处理各种格式的数据集。最新发布的3.3.0版本带来了一系列令人兴奋的新功能和性能改进,特别是在异步处理和数据处理效率方面有了显著提升。
异步函数支持:让数据处理更灵活
3.3.0版本最引人注目的新特性是在map()方法中支持异步函数。这一改进使得开发者能够在数据处理流程中无缝集成异步操作,特别适合以下场景:
- 下载远程资源(如图片、音频等)
- 调用外部API(如LLM推理服务)
- 执行IO密集型操作
传统的数据处理流程中,这些操作往往会成为性能瓶颈。现在,开发者可以轻松编写异步函数来处理这些任务:
async def download_image(example):
return await download_from_url(example["image_url"])
ds = ds.map(download_image)
这种设计不仅提高了代码的可读性,还能充分利用现代Python的异步特性,显著提升数据处理管道的吞吐量。
数据集重复功能:简化数据扩充
新版本增加了repeat()方法,使得数据扩充变得更加简单直观。这在以下场景特别有用:
- 小样本学习时扩充训练数据
- 需要多次遍历数据集进行模型训练
- 数据增强策略的实施
使用方法非常简单:
ds = ds.repeat(10) # 将数据集重复10次
性能优化:Pandas和Polars集成
3.3.0版本对IterableDataset进行了重大改进,新增了对Pandas和Polars格式的支持。这意味着:
- 可以利用这些高性能数据处理库的优化功能
- 实现零拷贝数据处理,减少内存开销
- 支持更复杂的数据转换操作
例如,使用Polars进行高效字符串处理:
ds = ds.with_format("polars")
expr = pl.col("solution").str.extract("boxed\\{(.*)\\}").alias("value_solution")
ds = ds.map(lambda df: df.with_columns(expr), batched=True)
格式处理优化:提升IterableDataset性能
针对使用NumPy格式的IterableDataset,新版本优化了格式转换流程,使得以下操作更加高效:
- 格式转换后的映射操作(map)
- 过滤操作(filter)
- 批量处理(batched operations)
这一改进显著减少了数据处理管道的延迟,特别是在流式处理大数据集时效果更为明显。
其他改进与修复
除了上述主要特性外,3.3.0版本还包含多项改进:
- 优化了序列编码处理,提升了对标量值的处理效率
- 修复了WebDataset特殊列位置的问题
- 移除了对.h5格式的图片支持
- 更新了文档,增加了Pandas、PyArrow和Polars的使用说明
这些改进共同构成了一个更加强大、高效的HuggingFace Datasets库,为机器学习工程师和数据科学家提供了更好的工具来处理日益复杂的数据处理需求。无论是处理小规模实验数据还是大规模生产数据,3.3.0版本都能提供卓越的性能和灵活性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.21 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258