推荐开源项目:ADASYN - 均衡处理偏斜数据集的利器
2024-06-21 00:38:13作者:范靓好Udolf
1、项目介绍
在机器学习领域中,面对严重不平衡的数据集是常有的挑战。【ADASYN(Adaptive Synthetic Sampling Approach for Imbalanced Learning)】是一个Python模块,旨在解决这个问题,它采用了一种自适应的过采样技术来创建新的少数类样本,从而平衡数据分布。通过对现有少数类样本添加半随机噪声,ADASYN能够帮助算法更好地应对分类难题。
2、项目技术分析
ADASYN的核心思想在于对难以分类的样本进行针对性的过采样。不同于简单的随机复制,它会计算样本之间的距离,并优先选择更难分类的样本进行合成,以生成新实例。此外,该项目还支持多类别分类问题,兼容流行的机器学习库——scikit-learn,这使得集成到现有项目中更加便捷。
3、项目及技术应用场景
- 数据预处理:在金融风控、医疗诊断、图像识别等场景中,往往存在严重的类别不平衡问题,如欺诈交易少而正常交易多。ADASYN可作为数据预处理步骤,提高模型对小概率事件的预测能力。
- 监督学习优化:对于任何依赖于均衡样本分布的监督学习算法,如SVM、决策树或神经网络,ADASYN都能帮助改善模型性能。
- 实时数据分析:对于实时流式数据,ADASYN可以用于动态调整样本比例,保证模型训练的稳定性。
4、项目特点
- 自适应性:针对难以分类的样本进行过采样,提升模型的学习效果。
- 兼容性:与scikit-learn无缝集成,方便与其他机器学习算法结合使用。
- 多类别支持:不仅仅适用于二分类问题,也支持多类别分类任务。
- 简单易用:通过简洁的API设计,用户可以轻松实现数据平衡处理。
要体验ADASYN的强大功能,只需安装并导入相应的模块:
pip install git+https://github.com/stavskal/ADASYN
from adasyn import ADASYN
adasyn = ADASYN(k=7, imb_threshold=0.6, ratio=0.75)
new_X, new_y = adasn.fit_transform(X, y) # 使用你的不平衡数据集X, y
正如图示(查看源代码中的图片),ADASYN在处理二分类问题时,能够明显改进数据分布,提高模型的泛化能力。
参考文献:
- H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning,” in Proc. Int. Joint Conf. Neural Networks (IJCNN’08), pp. 1322-1328, 2008.
如果你正在寻找一种有效的方法来处理不平衡数据集,ADASYN绝对值得尝试!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250