推荐开源项目:ADASYN - 均衡处理偏斜数据集的利器
2024-06-21 00:38:13作者:范靓好Udolf
1、项目介绍
在机器学习领域中,面对严重不平衡的数据集是常有的挑战。【ADASYN(Adaptive Synthetic Sampling Approach for Imbalanced Learning)】是一个Python模块,旨在解决这个问题,它采用了一种自适应的过采样技术来创建新的少数类样本,从而平衡数据分布。通过对现有少数类样本添加半随机噪声,ADASYN能够帮助算法更好地应对分类难题。
2、项目技术分析
ADASYN的核心思想在于对难以分类的样本进行针对性的过采样。不同于简单的随机复制,它会计算样本之间的距离,并优先选择更难分类的样本进行合成,以生成新实例。此外,该项目还支持多类别分类问题,兼容流行的机器学习库——scikit-learn,这使得集成到现有项目中更加便捷。
3、项目及技术应用场景
- 数据预处理:在金融风控、医疗诊断、图像识别等场景中,往往存在严重的类别不平衡问题,如欺诈交易少而正常交易多。ADASYN可作为数据预处理步骤,提高模型对小概率事件的预测能力。
- 监督学习优化:对于任何依赖于均衡样本分布的监督学习算法,如SVM、决策树或神经网络,ADASYN都能帮助改善模型性能。
- 实时数据分析:对于实时流式数据,ADASYN可以用于动态调整样本比例,保证模型训练的稳定性。
4、项目特点
- 自适应性:针对难以分类的样本进行过采样,提升模型的学习效果。
- 兼容性:与scikit-learn无缝集成,方便与其他机器学习算法结合使用。
- 多类别支持:不仅仅适用于二分类问题,也支持多类别分类任务。
- 简单易用:通过简洁的API设计,用户可以轻松实现数据平衡处理。
要体验ADASYN的强大功能,只需安装并导入相应的模块:
pip install git+https://github.com/stavskal/ADASYN
from adasyn import ADASYN
adasyn = ADASYN(k=7, imb_threshold=0.6, ratio=0.75)
new_X, new_y = adasn.fit_transform(X, y) # 使用你的不平衡数据集X, y
正如图示(查看源代码中的图片),ADASYN在处理二分类问题时,能够明显改进数据分布,提高模型的泛化能力。
参考文献:
- H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning,” in Proc. Int. Joint Conf. Neural Networks (IJCNN’08), pp. 1322-1328, 2008.
如果你正在寻找一种有效的方法来处理不平衡数据集,ADASYN绝对值得尝试!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30