推荐开源项目:ADASYN - 均衡处理偏斜数据集的利器
2024-06-21 00:38:13作者:范靓好Udolf
1、项目介绍
在机器学习领域中,面对严重不平衡的数据集是常有的挑战。【ADASYN(Adaptive Synthetic Sampling Approach for Imbalanced Learning)】是一个Python模块,旨在解决这个问题,它采用了一种自适应的过采样技术来创建新的少数类样本,从而平衡数据分布。通过对现有少数类样本添加半随机噪声,ADASYN能够帮助算法更好地应对分类难题。
2、项目技术分析
ADASYN的核心思想在于对难以分类的样本进行针对性的过采样。不同于简单的随机复制,它会计算样本之间的距离,并优先选择更难分类的样本进行合成,以生成新实例。此外,该项目还支持多类别分类问题,兼容流行的机器学习库——scikit-learn,这使得集成到现有项目中更加便捷。
3、项目及技术应用场景
- 数据预处理:在金融风控、医疗诊断、图像识别等场景中,往往存在严重的类别不平衡问题,如欺诈交易少而正常交易多。ADASYN可作为数据预处理步骤,提高模型对小概率事件的预测能力。
- 监督学习优化:对于任何依赖于均衡样本分布的监督学习算法,如SVM、决策树或神经网络,ADASYN都能帮助改善模型性能。
- 实时数据分析:对于实时流式数据,ADASYN可以用于动态调整样本比例,保证模型训练的稳定性。
4、项目特点
- 自适应性:针对难以分类的样本进行过采样,提升模型的学习效果。
- 兼容性:与scikit-learn无缝集成,方便与其他机器学习算法结合使用。
- 多类别支持:不仅仅适用于二分类问题,也支持多类别分类任务。
- 简单易用:通过简洁的API设计,用户可以轻松实现数据平衡处理。
要体验ADASYN的强大功能,只需安装并导入相应的模块:
pip install git+https://github.com/stavskal/ADASYN
from adasyn import ADASYN
adasyn = ADASYN(k=7, imb_threshold=0.6, ratio=0.75)
new_X, new_y = adasn.fit_transform(X, y) # 使用你的不平衡数据集X, y
正如图示(查看源代码中的图片),ADASYN在处理二分类问题时,能够明显改进数据分布,提高模型的泛化能力。
参考文献:
- H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning,” in Proc. Int. Joint Conf. Neural Networks (IJCNN’08), pp. 1322-1328, 2008.
如果你正在寻找一种有效的方法来处理不平衡数据集,ADASYN绝对值得尝试!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
702
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
React Native鸿蒙化仓库
JavaScript
278
329
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1