推荐开源项目:ADASYN - 均衡处理偏斜数据集的利器
2024-06-21 00:38:13作者:范靓好Udolf
1、项目介绍
在机器学习领域中,面对严重不平衡的数据集是常有的挑战。【ADASYN(Adaptive Synthetic Sampling Approach for Imbalanced Learning)】是一个Python模块,旨在解决这个问题,它采用了一种自适应的过采样技术来创建新的少数类样本,从而平衡数据分布。通过对现有少数类样本添加半随机噪声,ADASYN能够帮助算法更好地应对分类难题。
2、项目技术分析
ADASYN的核心思想在于对难以分类的样本进行针对性的过采样。不同于简单的随机复制,它会计算样本之间的距离,并优先选择更难分类的样本进行合成,以生成新实例。此外,该项目还支持多类别分类问题,兼容流行的机器学习库——scikit-learn,这使得集成到现有项目中更加便捷。
3、项目及技术应用场景
- 数据预处理:在金融风控、医疗诊断、图像识别等场景中,往往存在严重的类别不平衡问题,如欺诈交易少而正常交易多。ADASYN可作为数据预处理步骤,提高模型对小概率事件的预测能力。
- 监督学习优化:对于任何依赖于均衡样本分布的监督学习算法,如SVM、决策树或神经网络,ADASYN都能帮助改善模型性能。
- 实时数据分析:对于实时流式数据,ADASYN可以用于动态调整样本比例,保证模型训练的稳定性。
4、项目特点
- 自适应性:针对难以分类的样本进行过采样,提升模型的学习效果。
- 兼容性:与scikit-learn无缝集成,方便与其他机器学习算法结合使用。
- 多类别支持:不仅仅适用于二分类问题,也支持多类别分类任务。
- 简单易用:通过简洁的API设计,用户可以轻松实现数据平衡处理。
要体验ADASYN的强大功能,只需安装并导入相应的模块:
pip install git+https://github.com/stavskal/ADASYN
from adasyn import ADASYN
adasyn = ADASYN(k=7, imb_threshold=0.6, ratio=0.75)
new_X, new_y = adasn.fit_transform(X, y) # 使用你的不平衡数据集X, y
正如图示(查看源代码中的图片),ADASYN在处理二分类问题时,能够明显改进数据分布,提高模型的泛化能力。
参考文献:
- H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning,” in Proc. Int. Joint Conf. Neural Networks (IJCNN’08), pp. 1322-1328, 2008.
如果你正在寻找一种有效的方法来处理不平衡数据集,ADASYN绝对值得尝试!
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5