探索数据欺诈新视角:CARE-GNN —— 一种对抗伪装欺诈者的图神经网络框架
2024-05-26 21:41:03作者:董斯意
项目介绍
在数字化时代的当下,欺诈行为日益复杂,传统的检测方法往往无法准确识别伪装的欺诈者。为此,我们向您推荐CARE-GNN,这是一个由PyTorch实现的图神经网络(GNN)模型,专门针对CIKM 2020会议上发表的研究成果:《增强图神经网络式欺诈检测器对伪装欺诈者的抵抗力》。这一开源项目旨在通过创新的相似度测量、邻居选择和关系感知聚合策略,提升欺诈检测的适应性和准确性。
项目技术分析
CARE-GNN的核心在于其三个增强模块:
- 标签感知相似度量:它能计算中心节点与其邻接节点之间的特征和标签相似性。
- 相似度感知邻居选择器:采用top-p抽样与强化学习相结合的方式,以优化每种关系下的邻居选取数量。
- 关系感知邻居聚合器:直接利用最优邻居选择阈值作为权重,从不同关系中聚合信息。
这些模块共同作用于多关系图上,使得CARE-GNN具备了以下特性:
- 适应性:能够自适应地为任意多关系图选择最佳邻居进行聚合。
- 高效率:无需注意力机制和深度强化学习,保持高效运算。
- 灵活性:易于集成其他神经模块和外部知识。
此外,CARE-GNN还与TensorFlow工具箱集成,包含了多种GNN基础的欺诈检测器。
应用场景
CARE-GNN适用于各种依赖于节点间相互作用来识别异常或欺诈行为的领域,包括但不限于:
- 在线交易中的欺诈检测,如信用卡欺诈。
- 社交网络中的虚假账户检测。
- 网络广告点击率预测中的无效流量检测。
- 电子商务平台的商品评论欺诈。
项目特点
- 易用性:只需几个简单的命令即可下载、安装和运行代码,支持Python 3.6及以上版本。
- 数据处理灵活性:可处理自定义的数据集,只需提供适当的稀疏矩阵和标签数据。
- 性能卓越:经过优化,CARE-GNN能在CPU和GPU环境中均表现出良好的性能。
如果您正在寻求改进您的欺诈检测系统或者希望了解更多关于GNN在反欺诈领域的应用,那么CARE-GNN是一个值得尝试和研究的优秀开源项目。
引用
如果在您的工作中使用到CARE-GNN,请引用以下文献:
@inproceedings{dou2020enhancing,
title={Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged Fraudsters},
author={Dou, Yingtong and Liu, Zhiwei and Sun, Li and Deng, Yutong and Peng, Hao and Yu, Philip S},
booktitle={Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM'20)},
year={2020}
}
立即加入CARE-GNN的世界,用智能的力量提升数据安全,让欺诈无处遁形!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
React Native鸿蒙化仓库
JavaScript
248
317
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
214
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100