GPUStack项目中vLLM引擎运行Deepseek 70B模型的内存优化实践
2025-06-30 23:08:08作者:房伟宁
在使用GPUStack项目(v0.6.0版本)运行Deepseek 70B大语言模型时,技术人员遇到了一个典型的内存不足问题。本文将详细分析该问题的成因,并提供有效的解决方案。
问题现象分析
当尝试在8张A100 GPU(每张24GB显存)上运行Deepseek 70B模型时,系统报出CUDA内存不足错误。从日志中可以观察到几个关键现象:
- 每个GPU上已有约23.42GB内存被占用
- 仅剩余2MB空闲内存
- 错误发生在模型编译阶段,特别是torch.compile过程中
- 系统建议设置PYTORCH_CUDA_ALLOC_CONF环境变量
技术背景
GPUStack项目默认使用vLLM 0.8.4版本,该版本采用了V1引擎架构。V1引擎相比之前的版本在性能上有显著提升,但同时也带来了更高的内存需求,特别是在模型编译阶段。
Deepseek 70B作为一款700亿参数的大模型,其显存需求极为庞大。即使在8卡环境下,每张GPU也需要承载约8.75B参数,加上激活值和KV缓存,显存压力很大。
解决方案
经过实践验证,最有效的解决方案是:
-
切换回vLLM V0引擎:通过设置环境变量VLLM_USE_V1=0,可以强制使用更节省内存的V0引擎。虽然性能可能略有下降,但稳定性显著提高。
-
调整编译参数:在模型编译阶段,可以尝试以下优化:
- 减少编译时的batch size
- 限制最大并发请求数
- 调整KV缓存大小
-
显存管理优化:按照错误提示,可以设置PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True来改善显存碎片问题。
实践建议
对于需要在有限显存环境下运行超大模型的技术团队,建议:
- 优先考虑使用更节省内存的引擎版本
- 在模型部署前进行充分的内存压力测试
- 监控显存使用情况,特别是模型编译阶段
- 根据实际硬件配置调整模型参数和并发设置
总结
GPUStack项目为大规模语言模型部署提供了强大支持,但在运行像Deepseek 70B这样的超大模型时,仍需注意内存优化。通过合理选择引擎版本和调整配置参数,可以在有限硬件资源下实现稳定运行。这一经验对于其他类似规模的大模型部署也具有参考价值。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19