Input Remapper 2.1.0版本发布:宏功能全面升级与输入设备控制新体验
Input Remapper是一个强大的输入设备重映射工具,它允许用户重新定义键盘、鼠标和游戏控制器的按键功能。通过这个工具,用户可以实现复杂的按键映射、宏编程以及输入设备行为的深度定制。最新发布的2.1.0版本带来了一系列令人兴奋的新功能和改进,特别是在宏功能方面有了显著增强。
宏功能全面升级
1. 新增mod_tap宏
mod_tap宏是一个创新性的功能,它允许单个按键根据按下时间长短执行不同操作。短按时触发一个功能,长按时触发另一个功能。这种设计特别适合需要节省按键空间的场景,例如在紧凑的键盘布局或游戏控制器上实现更多功能。
2. parallel并行执行宏
parallel宏使得多个动作可以同时执行,而不是传统的顺序执行方式。这对于需要同时触发多个按键或鼠标动作的复杂操作特别有用,例如在游戏中同时执行移动和攻击动作。
3. 随机等待时间
wait宏现在支持通过max_time参数设置随机等待时间,这使得宏执行更加"人性化",避免了过于机械化的重复模式。在自动化测试或游戏脚本中,这种随机性可以更好地模拟真实用户操作。
4. 鼠标坐标控制
新增的mouse_xy宏提供了精确的鼠标坐标控制能力,用户可以编程实现复杂的鼠标移动轨迹。结合acceleration参数,可以实现平滑的加速/减速效果,这对于图形设计或游戏中的精确瞄准非常有帮助。
5. 键盘状态条件判断
if_numlock和if_capslock宏引入了条件判断功能,可以根据NumLock或CapsLock的状态执行不同的操作。这为创建上下文相关的宏提供了可能,大大增强了宏的灵活性。
核心改进与优化
输入设备兼容性提升
新版本改进了对无按钮但有轴输入设备(如某些专业控制器)的支持,确保这些设备也能被正确识别和配置。这一改进扩展了Input Remapper的应用范围,使其能够支持更多专业输入设备。
按键释放机制优化
在注入停止时,现在会正确释放所有被宏按下的按键。这一改进解决了之前版本中可能出现的按键"卡住"问题,特别是在宏执行被意外中断的情况下。
摇杆输入处理增强
修复了使用鼠标移动作为输入时的摇杆居中问题,使模拟摇杆控制更加精确和自然。这对于飞行模拟或竞速游戏等需要精确控制的场景尤为重要。
按键组合处理改进
优化了滚动按键时的输入组合处理,确保在多键快速连续按下时仍能正确识别组合键。这一改进特别有利于需要快速输入组合键的游戏玩家和专业用户。
架构与测试改进
2.1.0版本对宏架构进行了重大重构,使代码更加模块化和可维护。这些内部改进虽然对最终用户不可见,但为未来的功能扩展和稳定性提升奠定了坚实基础。
同时,项目增加了对自动化测试的支持,使开发团队能够更高效地验证功能并确保软件质量。这些改进将有助于加快未来版本的开发周期并提高发布质量。
总结
Input Remapper 2.1.0通过引入一系列创新的宏功能和重要的稳定性改进,进一步巩固了其作为专业级输入设备重映射工具的地位。无论是游戏玩家、自动化脚本开发者还是需要特殊输入配置的专业用户,都能从这个版本中获得显著的体验提升。特别是新增的条件判断、并行执行和随机等待等功能,为创建复杂而智能的输入配置提供了前所未有的灵活性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00