首页
/ 探索人体姿态新境界:AdaptivePose 开源项目深度解读

探索人体姿态新境界:AdaptivePose 开源项目深度解读

2024-06-03 21:28:01作者:郦嵘贵Just

在计算机视觉的浩瀚星河中,人体姿态估计一直是一项充满挑战的任务。今天,我们将聚焦于一颗闪耀的新星——【AdaptivePose】。这个由一组才华横溢的研究者开发并成功发表于AAAI2022的框架,正在重新定义单阶段多人姿态估计的边界。

项目介绍

AdaptivePose,一个简洁而强大的单阶段多人姿态估计框架,以其独特的策略,一举超越了论文报道的最佳性能。通过将人实例与其关键点之间的关系在一个前向传递中有效建模,它实现了效率与精度的完美平衡。不仅如此,其最新的升级版——AdaptivePose++,更是进一步提升了性能,巩固了其在领域的领先地位。

AdaptivePose架构图

技术剖析

AdaptivePose的核心在于“自适应点”概念,巧妙利用中心特征结合动态选定的人体部分相关点特征来丰富人体姿势编码。不同于传统的繁琐流程,它省去了启发式分组步骤和后期的手动优化,仅依赖于中心点非极大值抑制(Center NMS),从而确保了速度上的优势。技术上,它基于OKS损失进行回归头部训练,且无需额外推理开销即可提升性能,展现出了惊人的通用性和快速响应能力。

应用场景广泛

无论是拥挤的公共场所监控,还是追求高效处理的实时体育赛事分析,AdaptivePose都能游刃有余。它的设计使其特别适合于对速度和准确率有着双重要求的场景,如人群管理、远程医疗辅助、动作识别等领域。此外,对于那些希望在有限资源下实现高性能人体姿态检测的应用开发者来说,AdaptivePose无疑是一个理想选择。

项目亮点

  • 简单高效:单阶段处理,减少计算负担。
  • 泛化能力强:无论是在密集场景还是三维空间,均能稳定发挥。
  • 极致速度:去除不必要的后处理,大幅度加快推断速度。
  • 卓越性能:在不采用翻转或多尺度测试的前提下,优于多数底座式和单阶段方法。
  • 易于部署:提供了友好的API和示例代码,便于快速集成到实际应用中。

结果说话

在COCO验证集上,即便是基础配置,AdaptivePose也能达到67.0%的AP,而在更复杂的CrowdPose测试集中依然表现优异。搭载高配置模型时,性能更是突破至71.0%,这背后是其精心设计的网络结构和高效的训练策略的有力证明。

| Backbone     | inp_res | AP       | download  | time/ms|
|--------------|---------|-----------|--------|---|
|HRNet-W48     |   640   |    71.0   | [link]()  | 57 |

总结

AdaptivePose不仅仅是一个工具,它是对当前多人姿态估计挑战的一次大胆回应。通过其开源的精神,每一位开发者都得以探索这一前沿技术,将其力量融入自己的创新之中。无论是研究人员还是应用开发者,AdaptivePose都是通往高效、精准人体姿态估计路上的一大助力。立刻拥抱AdaptivePose,让您的项目拥有看见人体世界的能力,一起创造更加智能化的未来!


本文以Markdown格式呈现,旨在激发您对AdaptivePose的兴趣,并鼓励您在其基础上进行深入研究和实践。记住,技术的进步离不开社区的每一份贡献与支持,让我们共同见证下一个里程碑的到来。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5