Deformable Radial Kernel Splatting 开源项目教程
2025-05-21 10:36:32作者:房伟宁
1. 项目介绍
Deformable Radial Kernel Splatting(DRK)是一个开源项目,它扩展了高斯核函数,加入了可学习的径向基,从而能够更灵活地模拟各种形状的基元。该项目通过引入控制锐度和边界曲率的参数,使得DRK能够适应不同形状和大小的基元,具有广泛的应用潜力。
2. 项目快速启动
环境搭建
首先,你需要创建并激活一个Python环境:
使用Conda:
conda create -n drkenv python=3.9
conda activate drkenv
使用Virtualenv:
virtualenv drkenv -p python3.9
source drkenv/bin/activate
然后安装项目依赖:
pip install -r requirements.txt
接着,安装子模块:
cd submodules/depth-diff-gaussian-rasterization
python setup.py install
cd ../drk_splatting
python setup.py install
cd ../simple-knn
python setup.py install
cd ..
UI演示
项目提供了一个UI演示,以帮助理解DRK属性和缓存排序的效果。运行以下脚本启动演示:
python drk_demo.py
转换网格到DRK
项目还提供了一个脚本,用于将网格资产转换为DRK表示,无需训练。指定场景路径后,可以混合渲染网格和重建的场景:
python mesh2drk.py
数据下载
根据以下链接下载数据集:
- MipNeRF-360
- DiverseScenes
运行代码
运行以下命令来训练和评估模型:
训练:
CUDA_VISIBLE_DEVICES=${GPU} python train.py -s ${PATH_TO_DATA} -m ${LOG_PATH} --eval --gs_type DRK --kernel_density dense --cache_sort
评估:
CUDA_VISIBLE_DEVICES=${GPU} python train.py -s ${PATH_TO_DATA} -m ${LOG_PATH} --eval --gs_type DRK --kernel_density dense --cache_sort --metric
3. 应用案例和最佳实践
- 参数调整:通过调整DRK的参数,可以控制形状的锐度和边界曲率,以适应不同的场景和需求。
- 渲染模式切换:在UI演示中切换渲染模式(正常、透明度、深度、RGB),以观察不同渲染效果。
- 缓存排序:在训练和评估时使用缓存排序,可以避免弹出效应,并略微提高PSNR。
4. 典型生态项目
目前,与DRK相关的生态项目包括但不限于以下几种:
- 深度学习框架:如TensorFlow、PyTorch等,用于模型的训练和测试。
- 3D建模工具:如Blender、Maya等,用于创建和编辑3D模型。
- 图形渲染库:如OpenGL、DirectX等,用于模型的渲染。
以上就是Deformable Radial Kernel Splatting开源项目的最佳实践方式。通过以上步骤,你可以快速上手该项目,并在实际应用中探索更多可能性。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C036
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioAgent零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理TSX0109
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
430
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
346
Ascend Extension for PyTorch
Python
236
270
暂无简介
Dart
688
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
77
36
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
670