GLiNER项目在MPS设备上的微调问题与解决方案
背景介绍
GLiNER是一个基于Transformer架构的命名实体识别(NER)模型,它能够高效地从文本中提取结构化信息。在实际应用中,开发者经常需要对预训练模型进行微调(fine-tuning)以适应特定领域的任务需求。对于使用Apple Silicon芯片(M1/M2)的开发者来说,利用Metal Performance Shaders(MPS)进行加速是一个理想选择。
问题现象
在尝试使用MPS设备对GLiNER模型进行微调时,开发者遇到了一个典型错误:"Placeholder storage has not been allocated on MPS device!",随后是更具体的错误信息:"Calculated loss must be on the original device: cpu but device in use is mps:0"。
这个错误表明系统在尝试将计算从CPU转移到MPS设备时出现了问题,具体表现为损失值计算设备不匹配。
问题分析
通过深入分析,我们发现这个问题主要涉及以下几个方面:
-
设备管理冲突:当开发者显式设置设备为MPS时,Hugging Face的Trainer类内部可能有自己的设备管理逻辑,导致冲突。
-
Transformers版本兼容性:在较新版本的Transformers库(如4.42)中,对MPS设备的支持可能存在一些问题,特别是与损失计算相关的部分。
-
自动设备分配:GLiNER和Transformers库都有自己的设备自动检测和分配机制,多重管理可能导致意外行为。
解决方案
经过多次测试和验证,我们找到了以下有效的解决方案:
-
避免手动设置设备:不要显式调用
model.to(device)或设置设备变量,让Trainer自动处理设备分配。 -
使用兼容的Transformers版本:将Transformers库降级到4.41版本可以解决这个问题。这个版本对MPS设备的支持更加稳定。
-
确保数据加载正确:使用GLiNER提供的专用数据集类
GLiNERDataset来封装训练数据,确保数据格式与模型预期一致。
最佳实践建议
对于希望在Apple Silicon设备上微调GLiNER模型的开发者,我们建议:
-
创建干净的Python环境,专门安装兼容版本的库:
transformers==4.41.0 torch>=2.0.0 -
遵循GLiNER官方提供的训练脚本结构,避免不必要的设备设置代码。
-
监控训练过程中的设备使用情况,确保计算确实发生在MPS设备上。
-
对于大型数据集,考虑使用较小的批次大小(batch size)以避免内存问题。
技术原理
MPS是Apple提供的Metal Performance Shaders框架,它允许开发者充分利用Apple Silicon芯片的GPU能力。与CUDA类似,MPS为PyTorch提供了后端支持,使得在Mac设备上也能高效地进行深度学习训练。
在底层实现上,当PyTorch检测到MPS可用时,会自动将张量运算分配到MPS设备。然而,当多个组件(如模型、训练器、数据加载器等)各自尝试管理设备时,就可能出现冲突。Transformers库4.41版本在这方面提供了更稳定的实现。
总结
在Apple Silicon设备上使用MPS加速GLiNER模型的微调是完全可行的,关键在于使用兼容的库版本和正确的配置方法。通过本文介绍的方法,开发者可以顺利地在M1/M2芯片上高效地进行模型微调,充分利用硬件加速能力。
随着PyTorch和Transformers对MPS支持的不断完善,未来在Mac设备上进行深度学习开发将会变得更加顺畅。开发者应关注官方文档和版本更新,以获取最新的兼容性信息。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00