首页
/ GLiNER项目在MPS设备上的微调问题与解决方案

GLiNER项目在MPS设备上的微调问题与解决方案

2025-07-05 18:25:40作者:裘晴惠Vivianne

背景介绍

GLiNER是一个基于Transformer架构的命名实体识别(NER)模型,它能够高效地从文本中提取结构化信息。在实际应用中,开发者经常需要对预训练模型进行微调(fine-tuning)以适应特定领域的任务需求。对于使用Apple Silicon芯片(M1/M2)的开发者来说,利用Metal Performance Shaders(MPS)进行加速是一个理想选择。

问题现象

在尝试使用MPS设备对GLiNER模型进行微调时,开发者遇到了一个典型错误:"Placeholder storage has not been allocated on MPS device!",随后是更具体的错误信息:"Calculated loss must be on the original device: cpu but device in use is mps:0"。

这个错误表明系统在尝试将计算从CPU转移到MPS设备时出现了问题,具体表现为损失值计算设备不匹配。

问题分析

通过深入分析,我们发现这个问题主要涉及以下几个方面:

  1. 设备管理冲突:当开发者显式设置设备为MPS时,Hugging Face的Trainer类内部可能有自己的设备管理逻辑,导致冲突。

  2. Transformers版本兼容性:在较新版本的Transformers库(如4.42)中,对MPS设备的支持可能存在一些问题,特别是与损失计算相关的部分。

  3. 自动设备分配:GLiNER和Transformers库都有自己的设备自动检测和分配机制,多重管理可能导致意外行为。

解决方案

经过多次测试和验证,我们找到了以下有效的解决方案:

  1. 避免手动设置设备:不要显式调用model.to(device)或设置设备变量,让Trainer自动处理设备分配。

  2. 使用兼容的Transformers版本:将Transformers库降级到4.41版本可以解决这个问题。这个版本对MPS设备的支持更加稳定。

  3. 确保数据加载正确:使用GLiNER提供的专用数据集类GLiNERDataset来封装训练数据,确保数据格式与模型预期一致。

最佳实践建议

对于希望在Apple Silicon设备上微调GLiNER模型的开发者,我们建议:

  1. 创建干净的Python环境,专门安装兼容版本的库:

    transformers==4.41.0
    torch>=2.0.0
    
  2. 遵循GLiNER官方提供的训练脚本结构,避免不必要的设备设置代码。

  3. 监控训练过程中的设备使用情况,确保计算确实发生在MPS设备上。

  4. 对于大型数据集,考虑使用较小的批次大小(batch size)以避免内存问题。

技术原理

MPS是Apple提供的Metal Performance Shaders框架,它允许开发者充分利用Apple Silicon芯片的GPU能力。与CUDA类似,MPS为PyTorch提供了后端支持,使得在Mac设备上也能高效地进行深度学习训练。

在底层实现上,当PyTorch检测到MPS可用时,会自动将张量运算分配到MPS设备。然而,当多个组件(如模型、训练器、数据加载器等)各自尝试管理设备时,就可能出现冲突。Transformers库4.41版本在这方面提供了更稳定的实现。

总结

在Apple Silicon设备上使用MPS加速GLiNER模型的微调是完全可行的,关键在于使用兼容的库版本和正确的配置方法。通过本文介绍的方法,开发者可以顺利地在M1/M2芯片上高效地进行模型微调,充分利用硬件加速能力。

随着PyTorch和Transformers对MPS支持的不断完善,未来在Mac设备上进行深度学习开发将会变得更加顺畅。开发者应关注官方文档和版本更新,以获取最新的兼容性信息。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
176
262
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300
kernelkernel
deepin linux kernel
C
22
5
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K