LanceDB项目中混合搜索与向量搜索的距离计算差异分析
2025-06-03 09:06:20作者:裴麒琰
在LanceDB数据库的0.18.0版本中,用户发现了一个值得注意的现象:当执行混合搜索(hybrid search)和纯向量搜索时,相同数据点返回的距离值存在显著差异。这种现象可能会对依赖距离值进行结果排序或相似性判断的应用场景产生影响。
现象描述
通过对比测试可以清晰地观察到这一现象。在混合搜索模式下,某条记录(如_rowid=151)返回的距离值为0.391866,而在纯向量搜索中,相同记录的距离值却显示为5.877397。这种差异不仅存在于个别记录,而是普遍存在于搜索结果中。
技术背景
LanceDB作为向量数据库,支持两种主要的搜索方式:
- 纯向量搜索:基于向量相似度计算,返回最相似的向量结果
- 混合搜索:同时结合向量相似度和全文检索(FTS)的结果
在底层实现上,纯向量搜索使用了PQ(Product Quantization)压缩技术来加速搜索,这会引入一定的近似误差。当使用refine_factor(1)参数时,可以获得更精确的距离计算结果。
差异原因分析
经过深入调查,发现这种距离差异主要源于混合搜索的特殊处理机制:
- 归一化处理:混合搜索会对向量距离和全文检索分数都进行归一化,将它们映射到[0,1)的区间内
- 分数融合:混合搜索需要将不同类型的分数(向量距离和文本相关性)统一到一个可比较的尺度上
- 结果重排序:使用RRFReranker等重排序器时,会进一步调整最终得分
相比之下,纯向量搜索直接返回原始的距离计算结果(尽管可能经过PQ压缩),保持了距离度量的原始特性。
解决方案与改进方向
项目维护者已经确认这是一个需要改进的问题,并计划通过以下方式解决:
- 保留原始分数:在混合搜索中同时提供归一化后的分数和原始距离值
- 明确文档说明:在API文档中清晰说明不同搜索模式下的分数计算方式
- 提供配置选项:允许用户选择是否需要对分数进行归一化处理
对用户的影响与建议
对于当前版本的用户,建议:
- 比较不同搜索模式的结果时,注意距离/分数的计算方式差异
- 需要精确距离计算时,优先使用纯向量搜索模式
- 关注后续版本更新,及时获取更准确的距离计算结果
这一改进将使得LanceDB的搜索结果更加透明和一致,有助于用户构建更可靠的向量搜索应用。对于依赖距离阈值进行业务逻辑判断的应用场景尤为重要。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程中屏幕放大器知识点优化分析2 freeCodeCamp Cafe Menu项目中link元素的void特性解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp全栈开发课程中React实验项目的分类修正7 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp论坛排行榜项目中的错误日志规范要求10 freeCodeCamp课程页面空白问题的技术分析与解决方案
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
213
2.21 K

暂无简介
Dart
521
115

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
578

Ascend Extension for PyTorch
Python
64
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
86

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399