cc-rs项目中的循环依赖问题分析与解决方案
问题背景
在Rust生态系统中,cc-rs是一个广泛使用的构建工具,用于调用系统C编译器构建C/C++代码。近期,用户在使用cc-rs时发现了一个循环依赖问题,具体表现为当同时启用parking_lot的deadlock_detection特性、once_cell的parking_lot特性以及cc的parallel特性时,会出现包依赖循环。
问题分析
这个循环依赖的形成路径如下:
- backtrace包依赖parking_lot_core
- parking_lot_core依赖once_cell
- once_cell依赖cc
- cc又回过来依赖backtrace
这种循环依赖的根本原因在于cc-rs在1.1.0版本中引入了对once_cell的依赖(通过PR #1037),而once_cell又可能依赖parking_lot,从而形成了复杂的依赖关系网。
技术细节
cc-rs使用once_cell主要是为了parallel特性中的get_or_try_init功能。这个功能在标准库的OnceLock中虽然存在,但目前仍处于不稳定状态,且cc-rs的最低支持Rust版本(MSRV)为1.67,而OnceLock::get_or_try_init稳定需要1.70或更高版本。
解决方案探讨
目前有几种可能的解决方案:
-
提升MSRV至1.70+:直接使用标准库的OnceLock,这是最干净的解决方案,但会提高最低支持版本要求。
-
自定义实现get_or_try_init:可以基于标准库的OnceLock实现一个简化版的get_or_try_init,不需要unsafe代码,因为一旦初始化失败就不会再次尝试。
-
vendoring once_cell::sync:将once_cell的相关代码直接复制到cc-rs项目中,避免外部依赖。
-
条件编译:针对不同Rust版本使用不同的实现,但这会增加代码复杂度。
推荐方案
从长期维护和代码质量角度考虑,推荐将MSRV提升至1.70并使用标准库的OnceLock。虽然这会暂时影响一些使用旧版本Rust的用户,但能带来更稳定的实现和更简单的依赖关系。
如果必须保持当前MSRV,则可以考虑自定义实现方案,基于标准库的OnceLock包装一个简单的get_or_try_init功能,这样既能保持兼容性,又能避免外部依赖带来的循环问题。
总结
Rust生态中的依赖管理是一个复杂但重要的话题。cc-rs遇到的这个循环依赖问题展示了在保持向后兼容性和使用现代特性之间的权衡。作为库作者,需要在功能需求、兼容性要求和代码质量之间找到平衡点。对于用户而言,理解这些底层依赖关系有助于更好地诊断和解决构建问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00