Great Expectations中期望配置冲突问题的分析与修复
2025-05-22 08:31:09作者:戚魁泉Nursing
问题背景
在Great Expectations数据质量验证工具中,用户发现无法对同一列同时添加"值唯一性"和"非空值"两种期望验证。这是一个典型的数据验证场景,但在当前版本(1.2.4)中存在实现缺陷。
问题现象
当用户尝试为"sku_id"列同时添加以下两种期望时:
ExpectColumnValuesToBeUnique
- 验证列值唯一ExpectColumnValuesToNotBeNull
- 验证列值非空
系统仅保留了第一个期望配置,第二个期望被错误地视为重复项而忽略。这导致最终生成的期望套件(expectation suite)中只包含唯一性验证,缺失了非空验证。
技术分析
问题的根源在于Great Expectations内部用于比较期望配置是否相等的_expectations_are_equalish
方法存在逻辑缺陷。该方法当前仅比较两个期望配置的参数字典,而忽略了期望类型(expectation_type)这一关键属性。
具体表现为:
- 当比较
ExpectColumnValuesToBeUnique
和ExpectColumnValuesToNotBeNull
时 - 尽管它们的
expectation_type
不同("expect_column_values_to_be_unique" vs "expect_column_values_to_not_be_null") - 但由于它们应用于同一列("sku_id")
- 方法错误地返回True,认为它们是相同的期望
修复方案
修复的核心思路是在比较期望配置时,必须同时考虑期望类型和配置参数。具体修改为:
@staticmethod
def _expectations_are_equalish(expectation_a: Expectation, expectation_b: Expectation) -> bool:
exclude_params = {"id", "rendered_content", "notes", "meta"}
return (
expectation_a.expectation_type == expectation_b.expectation_type and
expectation_a.dict(exclude=exclude_params) == expectation_b.dict(exclude=exclude_params)
)
这一修改确保:
- 首先检查期望类型是否相同
- 然后比较排除元数据后的参数字典
- 只有两者都相同时才认为是相同的期望
影响与意义
该修复解决了以下重要问题:
- 允许用户对同一列配置多种不同类型的验证规则
- 保持了期望配置的唯一性判断准确性
- 提升了Great Expectations在复杂数据质量验证场景下的实用性
对于数据工程师和分析师而言,这意味着可以更灵活地构建全面的数据质量检查体系,确保数据在各个维度上都符合预期要求。
最佳实践建议
在实际使用Great Expectations时,建议:
- 明确区分不同维度的数据质量要求
- 对关键字段考虑多重验证(如唯一性+非空+格式验证)
- 定期检查期望套件配置是否完整覆盖业务需求
- 在升级版本时验证复杂期望组合是否正常工作
这一修复体现了Great Expectations项目对数据质量验证严谨性的持续追求,也为用户提供了更强大的数据治理工具。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.42 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
287