Great Expectations中期望配置冲突问题的分析与修复
2025-05-22 03:14:06作者:戚魁泉Nursing
问题背景
在Great Expectations数据质量验证工具中,用户发现无法对同一列同时添加"值唯一性"和"非空值"两种期望验证。这是一个典型的数据验证场景,但在当前版本(1.2.4)中存在实现缺陷。
问题现象
当用户尝试为"sku_id"列同时添加以下两种期望时:
ExpectColumnValuesToBeUnique- 验证列值唯一ExpectColumnValuesToNotBeNull- 验证列值非空
系统仅保留了第一个期望配置,第二个期望被错误地视为重复项而忽略。这导致最终生成的期望套件(expectation suite)中只包含唯一性验证,缺失了非空验证。
技术分析
问题的根源在于Great Expectations内部用于比较期望配置是否相等的_expectations_are_equalish方法存在逻辑缺陷。该方法当前仅比较两个期望配置的参数字典,而忽略了期望类型(expectation_type)这一关键属性。
具体表现为:
- 当比较
ExpectColumnValuesToBeUnique和ExpectColumnValuesToNotBeNull时 - 尽管它们的
expectation_type不同("expect_column_values_to_be_unique" vs "expect_column_values_to_not_be_null") - 但由于它们应用于同一列("sku_id")
- 方法错误地返回True,认为它们是相同的期望
修复方案
修复的核心思路是在比较期望配置时,必须同时考虑期望类型和配置参数。具体修改为:
@staticmethod
def _expectations_are_equalish(expectation_a: Expectation, expectation_b: Expectation) -> bool:
exclude_params = {"id", "rendered_content", "notes", "meta"}
return (
expectation_a.expectation_type == expectation_b.expectation_type and
expectation_a.dict(exclude=exclude_params) == expectation_b.dict(exclude=exclude_params)
)
这一修改确保:
- 首先检查期望类型是否相同
- 然后比较排除元数据后的参数字典
- 只有两者都相同时才认为是相同的期望
影响与意义
该修复解决了以下重要问题:
- 允许用户对同一列配置多种不同类型的验证规则
- 保持了期望配置的唯一性判断准确性
- 提升了Great Expectations在复杂数据质量验证场景下的实用性
对于数据工程师和分析师而言,这意味着可以更灵活地构建全面的数据质量检查体系,确保数据在各个维度上都符合预期要求。
最佳实践建议
在实际使用Great Expectations时,建议:
- 明确区分不同维度的数据质量要求
- 对关键字段考虑多重验证(如唯一性+非空+格式验证)
- 定期检查期望套件配置是否完整覆盖业务需求
- 在升级版本时验证复杂期望组合是否正常工作
这一修复体现了Great Expectations项目对数据质量验证严谨性的持续追求,也为用户提供了更强大的数据治理工具。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
304
2.65 K
Ascend Extension for PyTorch
Python
131
157
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
458
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
610
198
React Native鸿蒙化仓库
JavaScript
230
307
暂无简介
Dart
593
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
612
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.46 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
206