EmbedSeg项目2D图像分割训练教程
2025-07-08 05:55:53作者:凤尚柏Louis
前言
EmbedSeg是一个基于嵌入的实例分割框架,本教程将详细介绍如何使用EmbedSeg对2D图像进行实例分割模型的训练。我们将以usiigaci-2017数据集为例,逐步讲解训练流程中的各个关键环节。
环境准备
首先需要导入必要的Python库:
import numpy as np
import os
from EmbedSeg.train import begin_training
from EmbedSeg.utils.create_dicts import create_dataset_dict, create_model_dict, create_loss_dict, create_configs
import torch
from matplotlib.colors import ListedColormap
import json
数据集配置
数据路径设置
指定训练和验证数据的路径以及中心点嵌入类型:
data_dir = 'crops' # 数据目录
project_name = 'usiigaci-2017' # 项目名称
center = 'medoid' # 中心点类型:'medoid', 'approximate-medoid', 'centroid'
中心点类型的选择会影响模型学习实例表示的方式:
medoid: 使用实例的几何中心approximate-medoid: 近似几何中心centroid: 质心
数据属性加载
从data_properties.json文件中读取数据集属性:
if os.path.isfile('data_properties.json'):
with open('data_properties.json') as json_file:
data = json.load(json_file)
one_hot, data_type, foreground_weight, n_y, n_x = data['one_hot'], data['data_type'], int(data['foreground_weight']), int(data['n_y']), int(data['n_x'])
训练数据集配置
参数设置
train_size = len(os.listdir(os.path.join(data_dir, project_name, 'train', 'images')))
train_batch_size = 16
train_size: 一个epoch中网络看到的图像-掩码对数量,通常设置为训练图像裁剪块的总数train_batch_size: 训练批次大小
创建训练数据集字典
train_dataset_dict = create_dataset_dict(
data_dir=data_dir,
project_name=project_name,
center=center,
size=train_size,
batch_size=train_batch_size,
one_hot=one_hot,
type='train'
)
验证数据集配置
参数设置
val_size = len(os.listdir(os.path.join(data_dir, project_name, 'val', 'images')))
val_batch_size = 16
建议将val_size设置为验证图像裁剪块的总数。
创建验证数据集字典
val_dataset_dict = create_dataset_dict(
data_dir=data_dir,
project_name=project_name,
center=center,
size=val_size,
batch_size=val_batch_size,
one_hot=one_hot,
type='val'
)
模型配置
输入通道设置
input_channels = 1 # 输入图像的通道数
创建模型字典
model_dict = create_model_dict(input_channels=input_channels)
损失函数配置
创建损失函数字典:
loss_dict = create_loss_dict(foreground_weight=foreground_weight)
损失函数权重说明:
w_inst: 实例损失权重w_var: 方差损失权重w_seed: 种子损失权重
训练配置
训练参数设置
n_epochs = 200 # 训练轮数
save_dir = os.path.join('experiment', project_name+'-'+'demo') # 保存目录
resume_path = None # 恢复训练路径,如'./experiment/usiigaci-2017-demo/checkpoint.pth'
创建配置字典
configs = create_configs(
n_epochs=n_epochs,
one_hot=one_hot,
resume_path=resume_path,
save_dir=save_dir,
n_y=n_y,
n_x=n_x
)
可视化设置
选择颜色映射用于可视化:
new_cmap = np.load('../../../cmaps/cmap_60.npy')
new_cmap = ListedColormap(new_cmap) # 也可以使用'magma'等其他颜色映射
开始训练
执行训练:
begin_training(train_dataset_dict, val_dataset_dict, model_dict, loss_dict, configs, color_map=new_cmap)
常见问题排查
- 缺少中心图像:确保train和val目录中都包含中心图像
- 中心类型不匹配:确保在数据准备阶段生成的中心图像类型与训练时选择的center参数一致
- 恢复训练问题:检查resume_path路径是否正确,并确保save_dir指向正确的目录
通过本教程,您应该能够成功配置并启动EmbedSeg的2D实例分割训练流程。根据您的具体数据集和需求,可以调整上述参数以获得最佳性能。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355