EmbedSeg项目2D图像分割训练教程
2025-07-08 04:31:30作者:凤尚柏Louis
前言
EmbedSeg是一个基于嵌入的实例分割框架,本教程将详细介绍如何使用EmbedSeg对2D图像进行实例分割模型的训练。我们将以usiigaci-2017数据集为例,逐步讲解训练流程中的各个关键环节。
环境准备
首先需要导入必要的Python库:
import numpy as np
import os
from EmbedSeg.train import begin_training
from EmbedSeg.utils.create_dicts import create_dataset_dict, create_model_dict, create_loss_dict, create_configs
import torch
from matplotlib.colors import ListedColormap
import json
数据集配置
数据路径设置
指定训练和验证数据的路径以及中心点嵌入类型:
data_dir = 'crops' # 数据目录
project_name = 'usiigaci-2017' # 项目名称
center = 'medoid' # 中心点类型:'medoid', 'approximate-medoid', 'centroid'
中心点类型的选择会影响模型学习实例表示的方式:
medoid: 使用实例的几何中心approximate-medoid: 近似几何中心centroid: 质心
数据属性加载
从data_properties.json文件中读取数据集属性:
if os.path.isfile('data_properties.json'):
with open('data_properties.json') as json_file:
data = json.load(json_file)
one_hot, data_type, foreground_weight, n_y, n_x = data['one_hot'], data['data_type'], int(data['foreground_weight']), int(data['n_y']), int(data['n_x'])
训练数据集配置
参数设置
train_size = len(os.listdir(os.path.join(data_dir, project_name, 'train', 'images')))
train_batch_size = 16
train_size: 一个epoch中网络看到的图像-掩码对数量,通常设置为训练图像裁剪块的总数train_batch_size: 训练批次大小
创建训练数据集字典
train_dataset_dict = create_dataset_dict(
data_dir=data_dir,
project_name=project_name,
center=center,
size=train_size,
batch_size=train_batch_size,
one_hot=one_hot,
type='train'
)
验证数据集配置
参数设置
val_size = len(os.listdir(os.path.join(data_dir, project_name, 'val', 'images')))
val_batch_size = 16
建议将val_size设置为验证图像裁剪块的总数。
创建验证数据集字典
val_dataset_dict = create_dataset_dict(
data_dir=data_dir,
project_name=project_name,
center=center,
size=val_size,
batch_size=val_batch_size,
one_hot=one_hot,
type='val'
)
模型配置
输入通道设置
input_channels = 1 # 输入图像的通道数
创建模型字典
model_dict = create_model_dict(input_channels=input_channels)
损失函数配置
创建损失函数字典:
loss_dict = create_loss_dict(foreground_weight=foreground_weight)
损失函数权重说明:
w_inst: 实例损失权重w_var: 方差损失权重w_seed: 种子损失权重
训练配置
训练参数设置
n_epochs = 200 # 训练轮数
save_dir = os.path.join('experiment', project_name+'-'+'demo') # 保存目录
resume_path = None # 恢复训练路径,如'./experiment/usiigaci-2017-demo/checkpoint.pth'
创建配置字典
configs = create_configs(
n_epochs=n_epochs,
one_hot=one_hot,
resume_path=resume_path,
save_dir=save_dir,
n_y=n_y,
n_x=n_x
)
可视化设置
选择颜色映射用于可视化:
new_cmap = np.load('../../../cmaps/cmap_60.npy')
new_cmap = ListedColormap(new_cmap) # 也可以使用'magma'等其他颜色映射
开始训练
执行训练:
begin_training(train_dataset_dict, val_dataset_dict, model_dict, loss_dict, configs, color_map=new_cmap)
常见问题排查
- 缺少中心图像:确保train和val目录中都包含中心图像
- 中心类型不匹配:确保在数据准备阶段生成的中心图像类型与训练时选择的center参数一致
- 恢复训练问题:检查resume_path路径是否正确,并确保save_dir指向正确的目录
通过本教程,您应该能够成功配置并启动EmbedSeg的2D实例分割训练流程。根据您的具体数据集和需求,可以调整上述参数以获得最佳性能。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
246
2.42 K
React Native鸿蒙化仓库
JavaScript
216
291
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
353
1.65 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
406
暂无简介
Dart
541
118
仓颉编程语言运行时与标准库。
Cangjie
124
101
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.01 K
591
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
593
118