EmbedSeg项目2D图像分割训练教程
2025-07-08 00:54:21作者:凤尚柏Louis
前言
EmbedSeg是一个基于嵌入的实例分割框架,本教程将详细介绍如何使用EmbedSeg对2D图像进行实例分割模型的训练。我们将以usiigaci-2017数据集为例,逐步讲解训练流程中的各个关键环节。
环境准备
首先需要导入必要的Python库:
import numpy as np
import os
from EmbedSeg.train import begin_training
from EmbedSeg.utils.create_dicts import create_dataset_dict, create_model_dict, create_loss_dict, create_configs
import torch
from matplotlib.colors import ListedColormap
import json
数据集配置
数据路径设置
指定训练和验证数据的路径以及中心点嵌入类型:
data_dir = 'crops' # 数据目录
project_name = 'usiigaci-2017' # 项目名称
center = 'medoid' # 中心点类型:'medoid', 'approximate-medoid', 'centroid'
中心点类型的选择会影响模型学习实例表示的方式:
medoid
: 使用实例的几何中心approximate-medoid
: 近似几何中心centroid
: 质心
数据属性加载
从data_properties.json
文件中读取数据集属性:
if os.path.isfile('data_properties.json'):
with open('data_properties.json') as json_file:
data = json.load(json_file)
one_hot, data_type, foreground_weight, n_y, n_x = data['one_hot'], data['data_type'], int(data['foreground_weight']), int(data['n_y']), int(data['n_x'])
训练数据集配置
参数设置
train_size = len(os.listdir(os.path.join(data_dir, project_name, 'train', 'images')))
train_batch_size = 16
train_size
: 一个epoch中网络看到的图像-掩码对数量,通常设置为训练图像裁剪块的总数train_batch_size
: 训练批次大小
创建训练数据集字典
train_dataset_dict = create_dataset_dict(
data_dir=data_dir,
project_name=project_name,
center=center,
size=train_size,
batch_size=train_batch_size,
one_hot=one_hot,
type='train'
)
验证数据集配置
参数设置
val_size = len(os.listdir(os.path.join(data_dir, project_name, 'val', 'images')))
val_batch_size = 16
建议将val_size
设置为验证图像裁剪块的总数。
创建验证数据集字典
val_dataset_dict = create_dataset_dict(
data_dir=data_dir,
project_name=project_name,
center=center,
size=val_size,
batch_size=val_batch_size,
one_hot=one_hot,
type='val'
)
模型配置
输入通道设置
input_channels = 1 # 输入图像的通道数
创建模型字典
model_dict = create_model_dict(input_channels=input_channels)
损失函数配置
创建损失函数字典:
loss_dict = create_loss_dict(foreground_weight=foreground_weight)
损失函数权重说明:
w_inst
: 实例损失权重w_var
: 方差损失权重w_seed
: 种子损失权重
训练配置
训练参数设置
n_epochs = 200 # 训练轮数
save_dir = os.path.join('experiment', project_name+'-'+'demo') # 保存目录
resume_path = None # 恢复训练路径,如'./experiment/usiigaci-2017-demo/checkpoint.pth'
创建配置字典
configs = create_configs(
n_epochs=n_epochs,
one_hot=one_hot,
resume_path=resume_path,
save_dir=save_dir,
n_y=n_y,
n_x=n_x
)
可视化设置
选择颜色映射用于可视化:
new_cmap = np.load('../../../cmaps/cmap_60.npy')
new_cmap = ListedColormap(new_cmap) # 也可以使用'magma'等其他颜色映射
开始训练
执行训练:
begin_training(train_dataset_dict, val_dataset_dict, model_dict, loss_dict, configs, color_map=new_cmap)
常见问题排查
- 缺少中心图像:确保train和val目录中都包含中心图像
- 中心类型不匹配:确保在数据准备阶段生成的中心图像类型与训练时选择的center参数一致
- 恢复训练问题:检查resume_path路径是否正确,并确保save_dir指向正确的目录
通过本教程,您应该能够成功配置并启动EmbedSeg的2D实例分割训练流程。根据您的具体数据集和需求,可以调整上述参数以获得最佳性能。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
468

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
878
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
180
264

一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60