Plex-Meta-Manager中正则表达式标签属性过滤问题的分析与解决
问题背景
在Plex-Meta-Manager项目的最新nightly版本(1.20.0-nightly43)中,发现使用正则表达式(regex)对标签属性进行过滤时存在功能异常。具体表现为当对标签(label)或语言(language)属性应用正则过滤时,系统生成的过滤条件与预期不符,导致过滤结果不正确。
问题详细分析
标签名称过滤问题
当用户尝试使用正则表达式过滤标签名称时,例如配置如下YAML过滤条件:
filters:
- label.regex: '(?i)Language.*'
系统内部会生成一个基于标签ID的过滤条件,如:
Collection Filter label.regex: ['191386']
然后尝试将这个标签ID与标签名称进行匹配,这显然逻辑上是错误的。正确的做法应该是直接使用正则表达式匹配标签名称本身。
语言名称过滤问题
类似的问题也出现在语言过滤场景中。例如配置:
filters:
- audio_language.regex: '(?i)\bJapanese\b'
系统会生成基于2字母语言代码的过滤条件:
Collection Filter episodes: {'audio_language.regex': ['ja'], 'percentage': 50}
然后尝试将这个2字母代码与完整的语言名称(如"Japanese")和3字母语言代码(如"jpn")进行匹配。这不仅逻辑错误,还因为大小写敏感问题导致匹配失败。
问题根源
通过代码分析,发现问题出在builder.py文件的第2648-2652行。这段代码负责处理正则表达式过滤条件,但在生成最终过滤值时错误地使用了键(key)而非名称(name)。
解决方案
代码修正方案
修改builder.py中的相关代码,将最后一行中的key
替换为name
:
for reg in util.validate_regex(data, self.Type, validate=validate):
for name, key in names:
if name not in used and re.compile(reg).search(name):
used.append(name)
valid_list.append((name, key) if plex_search else name) # 修改此处
语言过滤优化建议
进一步分析发现,语言过滤时检查3字母代码(languageCode)是不必要的,因为:
- 常规过滤(非正则)只检查完整语言名称
- 完整语言名称(如"Japanese")永远不会与3字母代码(如"jpn")匹配
因此可以优化plex.py中的相关代码,移除对languageCode的检查:
if filter_attr == "audio_language":
for a in part.audioStreams():
attrs.extend([a.language]) # 移除了a.languageCode
if filter_attr == "subtitle_language":
for s in part.subtitleStreams():
attrs.extend([s.language]) # 移除了s.languageCode
测试验证
修改后的代码经过完整库测试,确认:
- 解决了原始的正则过滤问题
- 不会影响其他标签属性(如分辨率)的处理
- 性能有所提升(减少了不必要的匹配检查)
总结
本次发现的正则表达式过滤问题主要源于过滤条件生成逻辑的错误。通过修正builder.py中的关键代码行,并优化语言过滤的处理逻辑,不仅解决了功能性问题,还提升了系统效率。这些修改保持了与现有功能的兼容性,同时使正则过滤功能按预期工作。
对于Plex-Meta-Manager用户来说,这意味着他们可以更可靠地使用正则表达式来创建基于标签和语言属性的复杂过滤条件,从而更精确地管理他们的媒体库内容。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









