GSplat项目深度图训练技术解析
2025-06-28 15:34:46作者:裘旻烁
深度图训练的基本原理
GSplat项目作为3D高斯泼溅技术的重要实现,提供了灵活的渲染模式选择功能。在标准RGB渲染之外,系统特别支持了纯深度图的训练和渲染模式。这一特性为计算机视觉领域的研究者和开发者提供了更多可能性。
深度渲染模式详解
GSplat的rasterization API提供了多种渲染模式选择:
- "RGB":标准彩色图像渲染(默认模式)
- "D":累积深度渲染
- "ED":期望深度渲染
- "RGB+D":彩色图像与累积深度组合
- "RGB+ED":彩色图像与期望深度组合
其中纯深度训练需要选择"D"或"ED"模式,这两种模式都能生成单通道的深度图,但计算方式有所不同。
深度数据处理流程
在深度训练过程中,关键的技术点在于深度数据的处理方式。系统通常采用以下处理流程:
-
数据输入阶段:深度数据可以是来自RGB-D相机的原始深度图,或通过Colmap等SFM工具从多视角图像重建得到的点云数据。
-
数据规范化:深度值会根据场景尺度进行规范化处理,确保数值在合理范围内。
-
坐标转换:通过相机位姿将3D点云数据投影到2D图像平面,生成对应的深度图。
深度损失函数设计
深度训练的核心在于损失函数的设计。GSplat项目中深度损失通常基于以下考量:
-
深度值比较:直接比较预测深度图与真实深度图的像素值差异。
-
深度梯度保持:考虑深度图的边缘和连续性特征。
-
多尺度监督:在不同分辨率下进行深度一致性约束。
实际应用建议
对于希望使用纯深度数据进行训练的用户,需要注意以下几点:
-
数据准备:确保深度数据与相机参数准确对齐。
-
训练调整:可能需要调整学习率和优化策略,因为深度信号与RGB信号有不同的统计特性。
-
评估指标:设计合适的深度质量评估指标,如深度误差、边缘保持度等。
技术展望
纯深度训练在以下场景具有特殊价值:
- 低光照环境下的三维重建
- 单目深度估计的监督训练
- 几何优先的应用场景
随着3D高斯泼溅技术的不断发展,深度信息的利用方式也将更加多样化和精细化。GSplat项目提供的这一功能为相关研究奠定了重要基础。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218