MemProcFS项目中关于进程基址获取问题的技术分析
2025-06-22 00:48:52作者:董宙帆
背景介绍
MemProcFS是一个强大的内存处理文件系统项目,它提供了访问和分析系统内存的能力。在实际应用中,开发者经常需要获取特定进程的模块基址,这是进行内存分析和操作的基础步骤。然而,在某些特殊情况下,特别是当目标进程受到反作弊系统保护时,传统的基址获取方法可能会失效。
问题现象
在使用MemProcFS的VMMDLL_ProcessGetModuleBase函数获取进程模块基址时,开发者遇到了一个典型问题:虽然能够成功获取目标进程的PID,但无法获取其基址,函数返回值为0。这种情况尤其出现在某些受保护的游戏进程中,如使用了5E Protect或EAC(Easy Anti-Cheat)等反作弊系统的游戏。
技术分析
传统方法失效原因
传统的模块基址获取方法依赖于系统维护的模块列表。反作弊系统通常会采取以下手段干扰这一过程:
- 修改或隐藏进程的PEB(Process Environment Block)中的模块列表
- 动态改变模块的内存属性
- 使用自定义的加载器加载模块,绕过常规检测
- 主动检测和阻止外部工具的内存扫描
替代解决方案
在MemProcFS框架下,开发者发现可以通过分析进程的VAD(Virtual Address Descriptor)信息来间接获取模块基址。VAD是Windows内存管理器用来跟踪进程虚拟地址空间分配情况的数据结构,它记录了每个内存区域的属性和状态。
具体实现步骤如下:
- 使用
map_vad函数获取进程的所有VAD条目 - 遍历VAD条目,查找包含目标模块名称的条目
- 从匹配的VAD条目中提取起始地址作为模块基址
这种方法之所以有效,是因为VAD信息是由内核维护的,反作弊系统难以完全隐藏或伪造这些底层内存结构。
技术实现示例
以下是一个使用Rust语言实现的示例代码片段,展示了如何通过VAD分析获取受保护进程的基址:
let vmmprocess = vmm.process_from_name("target.exe")?;
if let Ok(vad_all) = vmmprocess.map_vad(true) {
if let Some(vad_entry) = vad_all.iter().find(|vad| vad.info.ends_with("target.exe")) {
println!("Found module base: {:#X}", vad_entry.va_start);
}
}
注意事项
- 这种方法虽然有效,但可能不如传统方法稳定,因为VAD条目可能包含多个匹配项
- 需要确保正确解析VAD条目中的信息字段,避免误判
- 某些高级保护系统可能会干扰VAD信息的完整性
- 在实际应用中应考虑添加错误处理和边界条件检查
结论
MemProcFS提供了灵活的内存分析能力,即使在面对受保护的进程时,开发者仍然可以通过深入分析内存结构找到替代解决方案。理解Windows内存管理机制和MemProcFS提供的各种功能接口,有助于开发出更健壮的内存分析工具。
对于安全研究人员和系统开发者来说,掌握多种内存分析技术非常重要,这不仅能应对各种保护机制,也能加深对操作系统内存管理的理解。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
197
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120