PyTorch强化学习库Cherry:最佳实践指南
2025-05-21 10:29:42作者:滑思眉Philip
1. 项目介绍
Cherry是一个基于PyTorch的开源强化学习库,专为研究人员设计。它不提供现有算法的单一体化接口,而是提供了一系列低级别、通用的工具,以支持研究者编写自己的算法。Cherry遵循UNIX哲学,每个工具都尽可能独立,以便研究者可以根据需要选择使用。
2. 项目快速启动
首先,确保你已经安装了PyTorch。然后,你可以通过pip安装Cherry:
pip install cherry-rl
下面是一个简单的示例,展示如何使用Cherry定义一个策略网络,并进行一次动作的采样:
import torch
from cherry import nn
from cherry.distributions import TanhNormal
# 定义一个策略网络
class VisionPolicy(nn.Policy):
def __init__(self, feature_extractor, actor):
super(VisionPolicy, self).__init__()
self.feature_extractor = feature_extractor
self.actor = actor
def forward(self, obs):
mean = self.actor(self.feature_extractor(obs))
std = 0.1 * torch.ones_like(mean)
return TanhNormal(mean, std)
# 创建策略实例
policy = VisionPolicy(MyResnetExtractor(), MyMLPActor())
# 采样一个动作
action = policy.act(obs)
确保替换MyResnetExtractor和MyMLPActor为你的特征提取器和演员网络的实际类。
3. 应用案例和最佳实践
定义和采样策略
在Cherry中,定义策略通常涉及创建一个继承自nn.Policy的类。以下是一个定义视觉策略的例子,它使用一个特征提取器和一个演员网络来产生动作:
# ...(省略导入和类定义)
# 使用策略
policy = VisionPolicy(MyResnetExtractor(), MyMLPActor())
obs = env.reset() # 假设env是环境实例
action = policy.act(obs)
经验回放
Cherry提供了ExperienceReplay类,用于存储和采样过渡。以下是如何使用它的一个例子:
# 创建经验回放对象
replay = cherry.ExperienceReplay()
# 交互环境和策略,存储过渡
for _ in range(1000):
action = policy.act(state)
next_state, reward, done, info = env.step(action)
replay.append(state, action, reward, next_state, done)
state = next_state
# 从经验回放中采样
batch = replay.sample(32, contiguous=True)
算法设计
Cherry提供了多种工具来帮助设计强化学习算法,如时间差分(TD)学习和策略梯度(PG)方法。以下是一个自定义算法的例子:
from dataclasses import dataclass
import torch.optim as optim
@dataclass
class MyA2C:
discount: float = 0.99
def update(self, replay, policy, state_value, optimizer):
# ...(省略算法实现细节)
# 使用自定义算法
my_a2c = MyA2C(discount=0.95)
# ...(省略其他必要代码)
4. 典型生态项目
Cherry可以与多个生态项目配合使用,例如OpenAI Baselines、John Schulman的 implementations等。这些项目提供了不同的算法和工具,可以与Cherry结合以增强其功能。
以上就是使用Cherry进行强化学习研究的最佳实践指南。通过这些实践,研究者可以更有效地开发新的强化学习算法。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.83 K
React Native鸿蒙化仓库
JavaScript
259
322