Tegola 开源矢量瓦片服务器使用教程
1. 项目介绍
Tegola 是一个用 Go 语言编写的开源矢量瓦片服务器,旨在高效地处理和分发 Mapbox 矢量瓦片。它支持多种空间数据源,包括 PostGIS、GeoPackage 和 SAP HANA Spatial。Tegola 提供了原生的几何处理功能,如简化、裁剪、验证、交集、包含、缩放和平移,并且完全符合 Mapbox 矢量瓦片 v2 规范。
主要特性
- 多数据源支持:支持 PostGIS、GeoPackage 和 SAP HANA Spatial。
- 嵌入式查看器:自动生成样式,方便数据可视化和检查。
- 缓存支持:支持多种缓存后端,如文件、S3、Redis 和 Azure Blob 存储。
- 并行处理:并行化瓦片服务和几何处理,提高性能。
- 多投影支持:支持 Web Mercator (3857) 和 WGS84 (4326) 投影。
- AWS Lambda 支持:支持在 AWS Lambda 上运行。
- HTTPS 支持:支持通过 HTTPS 提供服务。
- Prometheus 支持:支持 Prometheus 监控。
2. 项目快速启动
2.1 安装 Tegola
首先,从 Tegola GitHub 发布页面 下载适合你平台的二进制文件。
2.2 配置文件
Tegola 使用 TOML 格式的配置文件。以下是一个简单的配置示例,使用 PostGIS 作为数据源:
# 注册一个 MVT 数据提供者
[[providers]]
name = "my_postgis"
type = "mvt_postgis"
uri = "postgresql://tegola:<password>@localhost:5432/tegola?ssl_mode=prefer"
# 配置数据提供者的图层
[[providers.layers]]
name = "landuse"
sql = "SELECT ST_AsMVTGeom(geom, BBOX) AS geom, gid FROM gis.landuse WHERE geom && BBOX"
# 配置地图
[[maps]]
name = "zoning"
# 配置地图图层
[[maps.layers]]
name = "landuse"
provider_layer = "my_postgis.landuse"
min_zoom = 10
max_zoom = 16
2.3 启动服务器
将配置文件保存为 config.toml,然后在终端中运行以下命令启动 Tegola 服务器:
./tegola serve --config=config.toml
2.4 访问服务器
启动后,你可以通过浏览器访问 http://localhost:8080 来查看内置的查看器。你也可以通过以下 URL 获取矢量瓦片:
- 获取地图瓦片:
http://localhost:8080/maps/zoning/{z}/{x}/{y} - 获取地图图层瓦片:
http://localhost:8080/maps/zoning/landuse/{z}/{x}/{y}
3. 应用案例和最佳实践
3.1 城市规划
Tegola 可以用于城市规划应用,通过高效地分发矢量瓦片数据,帮助城市规划师和决策者快速查看和分析地理数据。例如,可以使用 Tegola 提供的地图服务来展示不同区域的用地类型、交通流量等信息。
3.2 物流管理
在物流管理中,Tegola 可以用于实时跟踪和可视化物流路径。通过将 PostGIS 中的路径数据转换为矢量瓦片,Tegola 可以高效地提供这些数据,帮助物流公司优化路线和提高效率。
3.3 环境监测
环境监测应用中,Tegola 可以用于展示环境数据,如空气质量、水质等。通过将监测数据与地理信息系统结合,Tegola 可以提供实时的环境数据可视化服务。
4. 典型生态项目
4.1 Mapbox GL JS
Mapbox GL JS 是一个用于在 Web 上渲染地图的 JavaScript 库。Tegola 生成的矢量瓦片可以直接与 Mapbox GL JS 集成,提供高性能的地图渲染服务。
4.2 OpenLayers
OpenLayers 是一个开源的 JavaScript 库,用于在 Web 上显示地图。Tegola 生成的矢量瓦片也可以与 OpenLayers 集成,提供丰富的地图交互功能。
4.3 QGIS
QGIS 是一个开源的地理信息系统软件,支持多种数据源和格式。Tegola 可以作为 QGIS 的数据源,通过插件或直接访问 Tegola 服务器,提供矢量瓦片数据。
通过这些生态项目的集成,Tegola 可以广泛应用于各种地理信息系统和地图服务中,提供高效、灵活的矢量瓦片服务。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00