Ragas项目中处理日语文本的Faithfulness度量问题解析
2025-05-26 02:58:25作者:庞眉杨Will
问题背景
在Ragas项目(一个用于评估检索增强生成系统的开源框架)中,使用Faithfulness度量评估日语文本时,开发者可能会遇到"WARNING:ragas.metrics._faithfulness:No statements were generated from the answer"的警告信息。这表明系统无法从日语答案中正确生成语句进行分析。
技术分析
Faithfulness度量是Ragas中用于评估生成答案是否忠实于提供上下文的重要指标。其工作原理是通过分析生成的答案,提取其中的陈述(statements),然后验证这些陈述是否能在提供的上下文中找到支持证据。
对于日语文本,问题主要出在句子分割(sentence segmentation)环节。默认的句子分割器可能无法正确处理日语特有的语言特征,如:
- 日语不使用空格分词
- 句子边界标记与英语不同
- 复杂的敬语系统可能影响分割
解决方案
要解决这个问题,需要为Faithfulness度量配置专门针对日语优化的句子分割器。具体实现步骤如下:
- 使用Ragas提供的get_segmenter函数,明确指定语言为日语
- 创建自定义的FaithfulnessExperimental实例
- 替换默认的句子分割器为日语专用版本
核心代码实现:
from ragas.experimental.metrics._faithfulness import FaithfulnessExperimental
from ragas.metrics.base import get_segmenter
# 创建自定义Faithfulness度量实例
faithfulness = FaithfulnessExperimental()
# 配置日语专用句子分割器
faithfulness.sentence_segmenter = get_segmenter(language="japanese", clean=False)
注意事项
- 确保输入数据格式正确,必须使用Dataset对象而非普通字典
- 需要正确配置语言模型,确保其支持日语处理
- 对于复杂日语文本,可能需要进一步调整分割器参数
最佳实践建议
- 对于多语言应用场景,建议为每种语言创建专用的评估管道
- 在处理日语等非拉丁语系语言时,应特别注意文本预处理环节
- 定期验证分割效果,可通过人工抽查确保分割质量
通过以上方法,开发者可以有效地在Ragas框架中实现对日语文本的Faithfulness评估,确保评估结果的准确性和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143