使用VictoriaMetrics监控MySQL数据库的实践指南
2025-07-03 16:29:38作者:仰钰奇
背景介绍
MySQL数据库作为最流行的关系型数据库之一,在生产环境中需要持续监控其运行状态。Prometheus社区提供的mysqld_exporter是专门用于收集MySQL指标的工具,而VictoriaMetrics则是一个高性能的时序数据库,可以作为Prometheus的长期存储方案。
常见问题分析
在实际部署中,许多用户会遇到mysqld_exporter指标无法被VictoriaMetrics正确抓取的问题。主要表现是只能获取到/metrics端点的exporter自身指标,而无法获取/probe端点的MySQL数据库指标。
解决方案
1. 使用VMServiceScrape资源
VictoriaMetrics提供了自定义资源VMServiceScrape,专门用于定义服务发现和指标抓取规则。通过创建VMServiceScrape资源,可以确保VictoriaMetrics正确抓取mysqld_exporter的所有指标。
apiVersion: operator.victoriametrics.com/v1beta1
kind: VMServiceScrape
metadata:
name: mysql-exporter
spec:
namespaceSelector:
matchNames:
- monitoring
selector:
matchLabels:
app.kubernetes.io/name: prometheus-mysql-exporter
endpoints:
- path: /probe
port: mysql-exporter
interval: 5s
params:
target: ["10.0.0.1:3306"]
auth_module: ["client.monitoring-mysql-creds"]
- path: /metrics
port: mysql-exporter
interval: 5s
2. 配置ScrapeConfig
对于静态目标,可以直接在VictoriaMetrics的ScrapeConfig中配置:
- job_name: mysqld-exporter
metrics_path: /probe
params:
auth_module: [client]
static_configs:
- targets:
- '10.0.0.1:3306'
labels:
instance: 'mysql-production'
relabel_configs:
- source_labels: [__address__]
target_label: __param_target
- source_labels: [__param_target]
target_label: instance
- target_label: __address__
replacement: mysql-exporter:9104
关键配置说明
-
多端点抓取:mysqld_exporter提供两个端点:
/metrics:exporter自身运行指标/probe:实际的MySQL数据库指标
-
认证配置:通过
auth_module参数指定认证模块,确保安全访问MySQL实例 -
目标重标记:使用relabel_configs将目标地址重写为exporter服务地址
-
指标保留:合理配置metricRelabelings可以优化存储空间
最佳实践建议
- 资源限制:为exporter配置合理的资源限制,防止OOM
- 采集间隔:根据业务需求调整采集间隔,生产环境建议5-15秒
- 标签管理:为不同环境(生产/测试)的MySQL实例添加区分标签
- 监控告警:设置基本的MySQL监控告警规则,如连接数、慢查询等
总结
通过合理配置VMServiceScrape和ScrapeConfig,可以确保VictoriaMetrics完整抓取mysqld_exporter的所有指标。这种方案不仅适用于MySQL监控,其原理也可以推广到其他exporter的集成场景中。关键在于理解exporter的多端点设计原理和VictoriaMetrics的特殊配置要求。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
264
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.34 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1