使用VictoriaMetrics监控MySQL数据库的实践指南
2025-07-03 12:14:00作者:仰钰奇
背景介绍
MySQL数据库作为最流行的关系型数据库之一,在生产环境中需要持续监控其运行状态。Prometheus社区提供的mysqld_exporter是专门用于收集MySQL指标的工具,而VictoriaMetrics则是一个高性能的时序数据库,可以作为Prometheus的长期存储方案。
常见问题分析
在实际部署中,许多用户会遇到mysqld_exporter指标无法被VictoriaMetrics正确抓取的问题。主要表现是只能获取到/metrics
端点的exporter自身指标,而无法获取/probe
端点的MySQL数据库指标。
解决方案
1. 使用VMServiceScrape资源
VictoriaMetrics提供了自定义资源VMServiceScrape,专门用于定义服务发现和指标抓取规则。通过创建VMServiceScrape资源,可以确保VictoriaMetrics正确抓取mysqld_exporter的所有指标。
apiVersion: operator.victoriametrics.com/v1beta1
kind: VMServiceScrape
metadata:
name: mysql-exporter
spec:
namespaceSelector:
matchNames:
- monitoring
selector:
matchLabels:
app.kubernetes.io/name: prometheus-mysql-exporter
endpoints:
- path: /probe
port: mysql-exporter
interval: 5s
params:
target: ["10.0.0.1:3306"]
auth_module: ["client.monitoring-mysql-creds"]
- path: /metrics
port: mysql-exporter
interval: 5s
2. 配置ScrapeConfig
对于静态目标,可以直接在VictoriaMetrics的ScrapeConfig中配置:
- job_name: mysqld-exporter
metrics_path: /probe
params:
auth_module: [client]
static_configs:
- targets:
- '10.0.0.1:3306'
labels:
instance: 'mysql-production'
relabel_configs:
- source_labels: [__address__]
target_label: __param_target
- source_labels: [__param_target]
target_label: instance
- target_label: __address__
replacement: mysql-exporter:9104
关键配置说明
-
多端点抓取:mysqld_exporter提供两个端点:
/metrics
:exporter自身运行指标/probe
:实际的MySQL数据库指标
-
认证配置:通过
auth_module
参数指定认证模块,确保安全访问MySQL实例 -
目标重标记:使用relabel_configs将目标地址重写为exporter服务地址
-
指标保留:合理配置metricRelabelings可以优化存储空间
最佳实践建议
- 资源限制:为exporter配置合理的资源限制,防止OOM
- 采集间隔:根据业务需求调整采集间隔,生产环境建议5-15秒
- 标签管理:为不同环境(生产/测试)的MySQL实例添加区分标签
- 监控告警:设置基本的MySQL监控告警规则,如连接数、慢查询等
总结
通过合理配置VMServiceScrape和ScrapeConfig,可以确保VictoriaMetrics完整抓取mysqld_exporter的所有指标。这种方案不仅适用于MySQL监控,其原理也可以推广到其他exporter的集成场景中。关键在于理解exporter的多端点设计原理和VictoriaMetrics的特殊配置要求。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
274

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
511