grokking-pytorch 的项目扩展与二次开发
2025-05-21 20:48:21作者:丁柯新Fawn
项目的基础介绍
grokking-pytorch 是一个开源项目,旨在帮助用户深入理解 PyTorch 深度学习框架的使用。该项目以 PyTorch 的官方 MNIST 示例为基础,通过详细的注释和代码块,向用户展示了如何使用 PyTorch 构建和训练一个神经网络模型。
项目的核心功能
该项目的核心功能是提供了一个可以运行的 PyTorch 训练脚本,其中包含了数据加载、模型定义、训练过程和测试评估等完整的机器学习流程。用户可以通过该项目学习到如何:
- 使用 PyTorch 进行数据预处理和加载
- 定义卷积神经网络模型
- 实现模型的训练和评估
- 使用命令行参数来配置训练过程
项目使用了哪些框架或库?
该项目主要使用了以下框架和库:
- PyTorch:用于构建和训练神经网络
- argparse:用于处理命令行参数
- os 和 torch:用于操作系统和 PyTorch 相关的操作
- torchvision:提供了用于计算机视觉的数据加载器和预处理方法
项目的代码目录及介绍
项目的代码目录相对简单,主要包括以下几个部分:
LICENSE.md:项目的 MIT 许可证文件README.md:项目的说明文档,包含项目的基本信息和如何运行项目train.py:项目的主要脚本文件,包含了模型定义、数据加载、训练和测试的完整代码
对项目进行扩展或者二次开发的方向
-
增加模型类型:目前项目使用的是卷积神经网络,可以考虑增加其他类型的神经网络模型,如循环神经网络(RNN)或生成对抗网络(GAN)。
-
数据增强:增加数据增强功能,提高模型的泛化能力,例如可以通过旋转、缩放、裁剪等方式来增加训练数据的多样性。
-
超参数优化:集成超参数优化工具,如使用网格搜索、随机搜索或贝叶斯优化等方法来寻找最优的超参数。
-
模型训练可视化:增加训练过程中模型性能的可视化功能,如使用 TensorBoard 或 Matplotlib 来实时展示训练损失和准确率。
-
模型保存与加载:优化模型的保存和加载功能,使其更加灵活,例如支持模型的持久化存储和跨平台迁移。
-
多GPU训练:扩展项目以支持多GPU训练,提高训练效率。
通过上述的扩展和二次开发,grokking-pytorch 项目不仅能够作为一个学习 PyTorch 的工具,还能够演变成一个功能更全面的深度学习实验平台。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1