PyTorch Cyclic Learning Rate 指南
项目介绍
PyTorch Cyclic Learning Rate 是一个基于 PyTorch 的实现循环学习率策略的库。该策略由 Leslie N. Smith在论文《Cyclical Learning Rates for Training Neural Networks》中提出,它通过在预定义的学习率范围内周期性地改变学习率来优化训练过程。这种方法不仅能够提高模型训练的效率,还能在某些情况下提升最终的性能。本项目提供了简化的接口,方便开发者在自己的PyTorch项目中集成这种学习率策略。
项目快速启动
为了快速开始使用 pytorch.cyclic.learning.rate 库,首先确保你的环境中已安装了 PyTorch。以下是如何安装此库及基本使用的示例:
安装
通过GitHub直接克隆或使用pip安装(假设已有相应版本的指示):
git clone https://github.com/anandsaha/pytorch.cyclic.learning.rate.git
cd pytorch.cyclic.learning.rate
# 若存在setup.py文件,则可以执行下面的命令进行安装
# python setup.py install
# 或者,如果项目提供了pip命令:
# pip install .
示例代码
在一个典型的训练循环中,使用这个库来设置学习率策略:
import torch
from torch import nn
from pytorch.cyclic.learning.rate import CyclicLR
# 假设有一个简单的网络和数据加载器
model = nn.Linear(100, 1)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
scheduler = CyclicLR(optimizer, base_lr=0.01, max_lr=0.1,
step_size_up=100, mode='triangular') # 根据需求调整参数
for epoch in range(10):
for i, (inputs, targets) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(inputs)
loss = nn.functional.cross_entropy(outputs, targets)
loss.backward()
optimizer.step()
# 在迭代中更新学习率
scheduler.step()
print("Training completed with cyclic learning rates.")
应用案例和最佳实践
在深度学习训练中,Cyclic Learning Rates (CLR) 可以显著改善模型收敛速度和最终性能,特别是在超参数调优成本高昂的情况下。最佳实践中,通常建议开始时选择一个宽泛的 LR 范围,并利用 CLR 自动探索最优学习率。此外,结合不同的周期模式(如triangular, triangular2, exp_range)可以根据任务复杂度和数据特性进行调整。
典型生态项目
在PyTorch社区,将Cyclic Learning Rates与其他框架或工具集成是一种常见做法,例如结合Vision Transformers、序列到序列学习模型等。虽然没有特定的“典型生态项目”列表直接关联到这个库,但在实际应用中,任何依赖于高效学习率策略的深度学习项目都可以从中受益。开发者通常会在自己的研究或产品项目中,实验性地采用类似CLR的方案,特别是在图像分类、自然语言处理等领域的模型训练过程中。
以上就是对 pytorch.cyclic.learning.rate 开源项目的简介及其基本使用指南。希望这可以帮助您有效利用这个工具改进您的机器学习训练流程。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C061
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00